Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2018_2_a7, author = {V. S. Monakhov and D. A. Khadanovich}, title = {On the solvability of a finite group with a pair of non-conjugate subgroups of primary indices}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {57--59}, publisher = {mathdoc}, number = {2}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PFMT_2018_2_a7/} }
TY - JOUR AU - V. S. Monakhov AU - D. A. Khadanovich TI - On the solvability of a finite group with a pair of non-conjugate subgroups of primary indices JO - Problemy fiziki, matematiki i tehniki PY - 2018 SP - 57 EP - 59 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PFMT_2018_2_a7/ LA - ru ID - PFMT_2018_2_a7 ER -
%0 Journal Article %A V. S. Monakhov %A D. A. Khadanovich %T On the solvability of a finite group with a pair of non-conjugate subgroups of primary indices %J Problemy fiziki, matematiki i tehniki %D 2018 %P 57-59 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/PFMT_2018_2_a7/ %G ru %F PFMT_2018_2_a7
V. S. Monakhov; D. A. Khadanovich. On the solvability of a finite group with a pair of non-conjugate subgroups of primary indices. Problemy fiziki, matematiki i tehniki, no. 2 (2018), pp. 57-59. http://geodesic.mathdoc.fr/item/PFMT_2018_2_a7/
[1] V.S. Monakhov, Vvedenie v teoriyu konechnykh grupp i ikh klassov, Vysheishaya shkola, Minsk, 2006, 207 pp.
[2] B. Huppert, Endliche Gruppen I, Springer, Berlin–Heidelberg–New York, 1967, 796 pp. | MR | Zbl
[3] K. Corradi, P.Z. Hermann, L. Hethelyi, E. Nortvath, “Miscellaneous rezults on supersolvable groups”, Groups St Andrews 2009 in Bath, v. 1, London Mathematical Society. Lecture Note Series, 387, 198–212 | MR | Zbl
[4] L.S. Kazarin, Yu.A. Korzyukov, “Konechnye razreshimye gruppy so sverkhrazreshimymi maksimalnymi podgruppami”, Izv. vuzov. Matem., 1980, no. 5, 22–27
[5] V.T. Nagrebetskii, “Invariantnye nakrytiya podgrupp”, Matem. zap. Uralsk. un-ta i Uralsk. matem. o-va, 5:3 (1966), 91–100
[6] V.T. Nagrebetskii, “O konechnykh minimalnykh nesverkhrazreshimykh gruppakh”, Konechnye gruppy, Nauka i tekhnika, Minsk, 1975, 104–108
[7] L.R. Nuhoff, “The influence on a finite group of the cofactors and subcofactors of its subgroups”, Trans. Amer. Math. Soc., 154 (1971), 459–492 | DOI | MR
[8] L.I. Shidov, “O maksimalnykh podgruppakh konechnykh grupp”, Sib. matem. zhurn., XII:3 (1971), 682–683 | Zbl
[9] G.A. Malanina, V.I. Khlebutina, G.S. Shevtsov, “Konechnye minimalnye ne vpolne faktorizuemye gruppy”, Matem. zam., 12:2 (1972), 157–162 | Zbl
[10] G.A. Malanina, G.S. Shevtsov, “Odno obobschenie konechnykh minimalnykh nesverkhrazreshimykh grupp”, Izv. vuzov. Matem., 1973, no. 7, 59–62
[11] A.V. Buzlanov, “Konechnye razreshimye gruppy s zadannymi maksimalnymi podgruppami”, Voprosy algebry, 6, Universitetskoe, Minsk, 1993, 35–45
[12] A.V. Buzlanov, “Konechnye razreshimye gruppy s normalnoi maksimalnoi metanilpotentnoi podgruppoi”, Voprosy algebry, 8, Universitetskoe, Minsk, 1995, 22–30
[13] A.V. Buzlanov, “Konechnye razreshimye gruppy s nesopryazhennymi metanilpotentnymi maksimalnymi podgruppami”, Problemy fiziki, matematiki i tekhniki, 2011, no. 2 (7), 52–57
[14] V.S. Monakhov, “Proizvedenie sverkhrazreshimoi i tsiklicheskoi ili primarnoi grupp”, Konechnye gruppy, Nauka i tekhnika, Minsk, 1978, 50–63
[15] O.Yu. Shmidt, “Gruppy, vse podgruppy kotorykh spetsialnye”, Matem. sb., 31 (1924), 366–372
[16] Yu.A. Golfand, “O gruppakh, vse podgruppy kotorykh spetsialnye”, DAN SSSR, 60:8 (1948), 1313–1315 | Zbl
[17] V.D. Mazurov, “O konechnykh gruppakh s metatsiklicheskimi silovskimi 2-podgruppami”, Sib. matem. zhurn., 8:5 (1967), 966–982
[18] V.N. Knyagina, “O proizvedenii B-gruppy i primarnoi gruppy”, Problemy fiziki, matematiki i tekhniki, 2017, no. 3 (32), 52–57
[19] V.S. Monakhov, “K dvum teoremam Vedernikova”, DAN BSSR, 15:10 (1971), 877–880 | Zbl
[20] V.A. Vedernikov, “O konechnykh faktorizuemykh gruppakh”, Matem. zam., 3:2 (1968), 201–210
[21] F. Gross, “Conjugacy of odd order Hall Subgroups”, Bull. London Math. Soc., 19:4 (1987), 311–319 | DOI | MR | Zbl