Realization of solution of the contact problem on indentation of rigid cylindrical indenter in isotropic viscoelastic strip on the orthotropic basis
Problemy fiziki, matematiki i tehniki, no. 2 (2018), pp. 51-56.

Voir la notice de l'article provenant de la source Math-Net.Ru

The mathematical model of calculation of the changing pressure at contact of a rigid cylindrical indenter with a viscoelastic isotropic strip rigidly fastened to an orthotropic basis is offered. The solution of the contact problem is reduced to integral equation. The realization of the numerical solution of the integral equation is presented.
Keywords: mathematical model, viscoelastic strip, orthotropic base, cylindrical indenter, contact problem.
@article{PFMT_2018_2_a6,
     author = {V. V. Mozharovsky and N. A. Maryina and D. S. Kuzmenkov},
     title = {Realization of solution of the contact problem on indentation of rigid cylindrical indenter in isotropic viscoelastic strip on the orthotropic basis},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {51--56},
     publisher = {mathdoc},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2018_2_a6/}
}
TY  - JOUR
AU  - V. V. Mozharovsky
AU  - N. A. Maryina
AU  - D. S. Kuzmenkov
TI  - Realization of solution of the contact problem on indentation of rigid cylindrical indenter in isotropic viscoelastic strip on the orthotropic basis
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2018
SP  - 51
EP  - 56
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2018_2_a6/
LA  - ru
ID  - PFMT_2018_2_a6
ER  - 
%0 Journal Article
%A V. V. Mozharovsky
%A N. A. Maryina
%A D. S. Kuzmenkov
%T Realization of solution of the contact problem on indentation of rigid cylindrical indenter in isotropic viscoelastic strip on the orthotropic basis
%J Problemy fiziki, matematiki i tehniki
%D 2018
%P 51-56
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2018_2_a6/
%G ru
%F PFMT_2018_2_a6
V. V. Mozharovsky; N. A. Maryina; D. S. Kuzmenkov. Realization of solution of the contact problem on indentation of rigid cylindrical indenter in isotropic viscoelastic strip on the orthotropic basis. Problemy fiziki, matematiki i tehniki, no. 2 (2018), pp. 51-56. http://geodesic.mathdoc.fr/item/PFMT_2018_2_a6/

[1] V.V. Mozharovskii, D.S. Kuzmenkov, “Metodika opredeleniya parametrov kontakta indentora s ortotropnym pokrytiem na uprugom izotropnom osnovanii”, Problemy fiziki, matematiki i tekhniki, 2016, no. 4 (29), 74–82

[2] Yu.N. Rabotnov, Mekhanika deformiruemogo tverdogo tela, Nauka, M., 1974, 744 pp.

[3] A.A. Ilyushin, Uprugoplastichnye deformatsii, Gostekhizdat, M., 1948, 376 pp.

[4] B.E. Pobedrya, Matematicheskaya teoriya nelineinoi vyazkouprugosti, Izd-vo MGU, M., 1973, 95 pp.

[5] R. Kristensen, Vvedenie v teoriyu vyazkouprugosti, Mir, M., 1974, 58 pp.

[6] E.I. Starovoitov, Osnovy teorii uprugosti, plastichnosti i vyazkouprugosti, uchebnik dlya studentov stroitelnykh spetsialnostei vuzov, BelGUT, Gomel, 2001, 195 pp.

[7] V.V. Mozharovskii, V.E. Starzhinskii, Prikladnaya mekhanika sloistykh tel iz kompozitov: ploskie kontaktnye zadachi, Nauka, M., 1988, 271 pp.

[8] M.A. Koltunov, Polzuchest i relaksatsiya, Vysshaya shkola, M., 1976, 277 pp.

[9] V.V. Mozharovskii, “Modelirovanie napryazhenno-deformirovannogo sostoyaniya massivnykh shin iz armirovannykh materialov”, Materialy, tekhnologii, instrumenty, 2008, no. 3, 14–21

[10] V.V. Mozharovskii, S.V. Shilko, C.B. Anfinogenov, A.V. Khotko, “Opredelenie soprotivleniya kacheniyu avtomobilnykh shin v zavisimosti ot uslovii ekspluatatsii”, Trenie i iznos, 2007, no. 2, 151–157

[11] V.V. Mozharovskii, N.A. Rogacheva, “Issledovanie napryazhennogo sostoyaniya voloknistogo kompozitsionnogo materiala s odnorodnym pokrytiem pri kontakte s tsilindricheskim indentorom”, Materialy, tekhnologii, instrumenty, 2000, no. 2, 5–10

[12] Yu. M. Pleskachevsky, V.V. Mozharovsky, Yu.F. Rouba, “Mathematical models of quasi-static interaction between fibrous composite bodies”, Computational methods in contact mechanics III, Proc. Int. Conf. (Madrid, July 3–5, 1997), Madrid, 1997, 363–372

[13] V.V. Mozharovskii, S.V. Shilko, “Analiz kontaktnogo vzaimodeistviya avtomobilnoi shiny s kolesnym diskom i dorozhnym pokrytiem”, Doklady Belorusskogo kongressa po mekhanike, Mn., 2007, 135–142

[14] V.V. Mozharovskii i dr., “Napryazhenno-deformirovannoe sostoyanie kompozitsionnykh pokrytii v tribologicheskikh sistemakh”, Trenie i iznos, 22:4 (2001), 379–385

[15] I.I. Argatov, F.J. Sabina, “Small-scale indentation of an elastic coated half-space: influence of poisson's ratios on the substrate effect”, International Journal of Engineering Science, 81 (2014), 33–40 | DOI | MR

[16] S.G. Lekhnitskii, Teoriya uprugosti anizotropnogo tela, Nauka, M., 1977, 416 pp.

[17] A.K. Malmeister, V.P. Tamuzh, G.A. Teters, Soprotivlenie zhestkikh polimernykh materialov, Zinatne, Riga, 1967, 394 pp.

[18] N.A. Rogacheva, “Modelirovanie kontaktnogo vzaimodeistviya zhestkogo indentora so sloistoi sistemoi s uchetom treniya”, Trenie i iznos, 21:4 (2000), 345–348

[19] V.V. Mozharovskii, N.A. Rogacheva, “Issledovanie napryazhennogo sostoyaniya voloknistogo kompozitsionnogo materiala s odnorodnym pokrytiem pri kontakte s tsilindricheskim indentorom”, Materialy, tekhnologii, instrumenty, 5:2 (2000), 5–10

[20] H.D. Conway, S.M. Vogel, K.A. Farnham, S. So, “Normal and shearing contact stresses in indented strips and slabs”, International Journal of Engineering Science, 4:I.4 (1966), 343–359 | DOI