On describing bound states for a spin~$1$ particle in the external Coulomb field
Problemy fiziki, matematiki i tehniki, no. 2 (2018), pp. 21-33.

Voir la notice de l'article provenant de la source Math-Net.Ru

The system of $10$ radial equations for a spin $1$ particle in the external Coulomb field, is studied. With the use of the space reflection operator, the system is split to subsystems, consisted of $4$ and $6$ equations respectively. The system of $4$ equations is solved in terms of hypergeometric functions, which gives the known energy spectrum. Combining the $6$-equation system, we derive several equations of the $2$-nd order for some separate functions. On of them may be recognized as a confluent Heun equation. A series of bound states is constructed in terms of the so called transcendental confluent Heun functions, which provides us with solutions for the second class of bound states, with corresponding formula for energy levels. The subsystem of $6$ is equations reduced to the system of the $1$-st order equations for $4$ functions $f_i$, $i=1,2,3,4$. We derive explicit form of a corresponding of the $4$-th order equation for each function. From four independent solutions of each $4$-th order equation, only two solutions may be referred to series of bound states.
Keywords: vector particle, Coulomb field, bound states, transcendental Heun functions, differential equations of second and fourth order.
Mots-clés : Lorentz condition, exact solutions
@article{PFMT_2018_2_a2,
     author = {E. M. Ovsiyuk and O. V. Veko and Ya. A. Voynova and A. D. Koral'kov and V. V. Kisel and V. M. Red'kov},
     title = {On describing bound states for a spin~$1$ particle in the external {Coulomb} field},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {21--33},
     publisher = {mathdoc},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2018_2_a2/}
}
TY  - JOUR
AU  - E. M. Ovsiyuk
AU  - O. V. Veko
AU  - Ya. A. Voynova
AU  - A. D. Koral'kov
AU  - V. V. Kisel
AU  - V. M. Red'kov
TI  - On describing bound states for a spin~$1$ particle in the external Coulomb field
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2018
SP  - 21
EP  - 33
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2018_2_a2/
LA  - ru
ID  - PFMT_2018_2_a2
ER  - 
%0 Journal Article
%A E. M. Ovsiyuk
%A O. V. Veko
%A Ya. A. Voynova
%A A. D. Koral'kov
%A V. V. Kisel
%A V. M. Red'kov
%T On describing bound states for a spin~$1$ particle in the external Coulomb field
%J Problemy fiziki, matematiki i tehniki
%D 2018
%P 21-33
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2018_2_a2/
%G ru
%F PFMT_2018_2_a2
E. M. Ovsiyuk; O. V. Veko; Ya. A. Voynova; A. D. Koral'kov; V. V. Kisel; V. M. Red'kov. On describing bound states for a spin~$1$ particle in the external Coulomb field. Problemy fiziki, matematiki i tehniki, no. 2 (2018), pp. 21-33. http://geodesic.mathdoc.fr/item/PFMT_2018_2_a2/

[1] I.E. Tamm, “Dvizhenie mezonov v elektromagnitnykh polyakh”, Dokl. AN SSSR, 29 (1940), 551–554

[2] E.M. Ovsiyuk, “Quantum Kepler Problem for Spin 1/2 Particle in Spaces on Constant Curvature. I. Pauli Theory”, Nonlinear Phenomena in Complex Systems, 14:1 (2011), 14–26 | MR | Zbl

[3] V.V. Kisel, E.M. Ovsiyuk, V.M. Red'kov, “On the wave functions and energy spectrum for a spin 1 particle in external Coulomb field”, Nonlinear Phenomena in Complex Systems, 13:4 (2010), 352–367 | MR | Zbl

[4] V.V. Kisel, V.M. Redkov, E.M. Ovsiyuk, “Volnovye funktsii i spektr energii dlya chastitsy so spinom 1 vo vneshnem kulonovskom pole”, DAN Belarusi, 55:1 (2011), 50–55

[5] E.M. Ovsiyuk, V.V. Kisel, V.M. Red'kov, Maxwell Electrodynamics and Boson Fields in Spaces of Constant Curvature, Nova Science Publishers, Inc., New York, 2014, 486 pp. | MR

[6] A. Ronveaux, Heun's differential equation, Oxford University Press, Oxford, 1995

[7] S.Yu. Slavyanov, W. Lay, Special functions. A unified theory based on singularities, Oxford University Press, Oxford, 2000 | MR | Zbl