On one application of the theory of $n$-multiply $\sigma$-local formations of finite groups
Problemy fiziki, matematiki i tehniki, no. 2 (2018), pp. 85-88.

Voir la notice de l'article provenant de la source Math-Net.Ru

Some properties and examples of $n$-multiply $\sigma$-local formations are described. One application of such formations in the theory of finite factorisable groups are cosidered.
Keywords: finite group, formation $\sigma$-function, $n$-multiply $\sigma$-local formation, $\sigma$-nilpotent group, $\Sigma_t^\sigma$-closed class of groups.
@article{PFMT_2018_2_a12,
     author = {Z. Chi and V. G. Safonov and A. N. Skiba},
     title = {On one application of the theory of $n$-multiply $\sigma$-local formations of finite groups},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {85--88},
     publisher = {mathdoc},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2018_2_a12/}
}
TY  - JOUR
AU  - Z. Chi
AU  - V. G. Safonov
AU  - A. N. Skiba
TI  - On one application of the theory of $n$-multiply $\sigma$-local formations of finite groups
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2018
SP  - 85
EP  - 88
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2018_2_a12/
LA  - en
ID  - PFMT_2018_2_a12
ER  - 
%0 Journal Article
%A Z. Chi
%A V. G. Safonov
%A A. N. Skiba
%T On one application of the theory of $n$-multiply $\sigma$-local formations of finite groups
%J Problemy fiziki, matematiki i tehniki
%D 2018
%P 85-88
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2018_2_a12/
%G en
%F PFMT_2018_2_a12
Z. Chi; V. G. Safonov; A. N. Skiba. On one application of the theory of $n$-multiply $\sigma$-local formations of finite groups. Problemy fiziki, matematiki i tehniki, no. 2 (2018), pp. 85-88. http://geodesic.mathdoc.fr/item/PFMT_2018_2_a12/

[1] L.A. Shemetkov, A.N. Skiba, Formatsii algebraicheskikh sistem, Nauka, M., 1989, 256 pp.

[2] K. Doerk, T. Hawkes, Finite Soluble Groups, Walter de Gruyter, Berlin–New York, 1992, 901 pp. | MR

[3] L.A. Shemetkov, Formatsii konechnykh grupp, Nauka, M., 1978, 272 pp.

[4] A.N. Skiba, “Some characterizations of finite $\sigma$-soluble $P\sigma T$-groups”, J. Algebra, 495 (2018), 114–129 | DOI | MR | Zbl

[5] A.N. Skiba, “On $\sigma$-subnormal and $\sigma$-permutable subgroups of finite groups”, J. Algebra, 436 (2015), 1–16 | DOI | MR | Zbl

[6] A.N. Skiba, “On one generalization of the local formations”, Problems of Physics, Mathematics and Technics, 2018, no. 1 (34), 79–82 | Zbl

[7] A. Ballester-Bolinches, L.M. Ezquerro, Classes of Finite Groups, Springer-Verlag, Dordrecht, 2006, 391 pp. | MR | Zbl

[8] K. Doerk, “Minimal nicht uberauflosbare, endlicher Gruppen”, Math. Z., 91 (1966), 198–205 | DOI | MR | Zbl

[9] O. Kramer, “Endliche Gruppen mit Untergruppen mit paarweise teilerfremden Indizes”, Math. Z., 139:1 (1974), 63–68 | DOI | MR | Zbl

[10] V.A. Kovaleva, A.N. Skiba, “Finite soluble groups with all $n$-maximal subgroups $\mathfrak{F}$-subnormal”, J. Group Theory, 17:2 (2014), 273–290 | DOI | MR | Zbl

[11] S.A. Chunikhin, Podgruppy konechnykh grupp, Nauka i tekhnika, M., 1964, 157 pp.

[12] L.A. Shemetkov, “Screens of the product of formations”, Doklady AN BSSR, 25:8 (1981), 677–680 | MR | Zbl

[13] A.N. Ckiba, Algebra formatsii, Nauka, M., 1997, 240 pp.

[14] Z. Chi, A.N. Skiba, “On $\Sigma_t^{\sigma}$-closed classes of finite groups”, Ukrainian Math. J. (to appear)

[15] A.N. Skiba, Z. Chi, One application of the $\sigma$-local formations of finite groups, Cornell University Library, 14 Apr 2018, arXiv: 1804.04634

[16] A.N. Skiba, L.A. Shemetkov, “Multiply $\mathcal{L}$-composition formations of finite groups”, Ukrainian Math. J., 52:6 (2000), 898–913 | DOI | MR | Zbl

[17] A.N. Skiba, “A generalization of a Hall theorem”, J. Algebra and its Appl., 15:4 (2015), 21–36 | MR