Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2018_2_a10, author = {A. D. Rusakou and M. V. Selkin}, title = {New criteria of associativity of $l$-ary operation $\eta_{s,\sigma,k}$}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {76--79}, publisher = {mathdoc}, number = {2}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PFMT_2018_2_a10/} }
A. D. Rusakou; M. V. Selkin. New criteria of associativity of $l$-ary operation $\eta_{s,\sigma,k}$. Problemy fiziki, matematiki i tehniki, no. 2 (2018), pp. 76-79. http://geodesic.mathdoc.fr/item/PFMT_2018_2_a10/
[1] A.M. Galmak, A.D Rusakov, “O poliadicheskikh operatsiyakh na dekartovykh stepenyakh”, Izvestiya GGU im. F. Skoriny, 2014, no. 3 (84), 35–40
[2] A.M. Galmak, “Mnogomestnye assotsiativnye operatsii na dekartovykh stepenyakh”, Vestsi NAN Belarusi, 2008, no. 3, 28–34
[3] A.M. Galmak, Mnogomestnye operatsii na dekartovykh stepenyakh, Izd. tsentr BGU, Minsk, 2009, 265 pp.
[4] E.L. Post, “Polyadic groups”, Trans. Amer. Math. Soc., 48:2 (1940), 208–350 | DOI | MR
[5] A.M. Galmak, A.D. Rusakov, “O nepoluassotsiativnosti poliadicheskogo gruppoida $\langle A^k,\eta_{s,\sigma,k}\rangle$”, Vesnik MDU imya A. A. Kulyashova, 2017, no. 2, 38–48 | MR
[6] A.D. Rusakov, “O nepoluassotsiativnosti poliadicheskoi operatsii $\eta_{s,\sigma,k}$”, Problemy fiziki, matematiki i tekhniki, 2017, no. 1 (30), 68–72