On the supersoluble residual of mutually permutable products
Problemy fiziki, matematiki i tehniki, no. 1 (2018), pp. 69-70.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that if a group $G=AB$ is the mutually permutable product of the supersoluble subgroups $A$ and $B$, then the supersoluble residual of $G$ coincides with the nilpotent residual of the derived subgroup $G'$.
Keywords: finite group, supersoluble subgroup, mutually permutable product, residual.
@article{PFMT_2018_1_a11,
     author = {V. S. Monakhov},
     title = {On the supersoluble residual of mutually permutable products},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {69--70},
     publisher = {mathdoc},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2018_1_a11/}
}
TY  - JOUR
AU  - V. S. Monakhov
TI  - On the supersoluble residual of mutually permutable products
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2018
SP  - 69
EP  - 70
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2018_1_a11/
LA  - en
ID  - PFMT_2018_1_a11
ER  - 
%0 Journal Article
%A V. S. Monakhov
%T On the supersoluble residual of mutually permutable products
%J Problemy fiziki, matematiki i tehniki
%D 2018
%P 69-70
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2018_1_a11/
%G en
%F PFMT_2018_1_a11
V. S. Monakhov. On the supersoluble residual of mutually permutable products. Problemy fiziki, matematiki i tehniki, no. 1 (2018), pp. 69-70. http://geodesic.mathdoc.fr/item/PFMT_2018_1_a11/

[1] K. Doerk, T. Hawkes, Finite soluble groups, Walter de Gruyter, Berlin–New York, 1992, 892 pp. | MR

[2] V.S. Monakhov, Introduction to the Theory of Finite Groups and their Classes, Vyshejshaja shkola, Minsk, 2006, 207 pp.

[3] B. Huppert, Endliche Gruppen I, Springer, Berlin–Heidelberg–New York, 1967, 796 pp. | MR | Zbl

[4] R. Baer, “Classes of finite groups and their properties”, Illinois J. Math., 1 (1957), 115–187 | MR | Zbl

[5] M. Asaad, A. Shaalan, “On the supersolubility of finite groups”, Arch. Math., 53 (1989), 318–326 | DOI | MR | Zbl

[6] M.J. Alejandre, A. Ballester-Bolinches, J. Cossey, “Permutable products of supersoluble groups”, J. Algebra, 276 (2004), 453–461 | DOI | MR | Zbl

[7] A. Ballester-Bolinches, J. Cossey, M.C. Pedraza-Aguilera, “On products of supersoluble groups”, Rev. Mat. Iberoamericana, 20 (2004), 413–425 | MR | Zbl

[8] J.C. Beidleman, H. Heineken, “Mutually permutable subgroups and group classes”, Arch. Math., 85 (2005), 18–30 | DOI | MR | Zbl

[9] A. Ballester-Bolinches, R. Esteban-Romero, M. Asaad, Products of Finite Groups, Walter de Gruyter, Berlin–New York, 2010, 334 pp. | MR | Zbl