Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2018_1_a11, author = {V. S. Monakhov}, title = {On the supersoluble residual of mutually permutable products}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {69--70}, publisher = {mathdoc}, number = {1}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PFMT_2018_1_a11/} }
V. S. Monakhov. On the supersoluble residual of mutually permutable products. Problemy fiziki, matematiki i tehniki, no. 1 (2018), pp. 69-70. http://geodesic.mathdoc.fr/item/PFMT_2018_1_a11/
[1] K. Doerk, T. Hawkes, Finite soluble groups, Walter de Gruyter, Berlin–New York, 1992, 892 pp. | MR
[2] V.S. Monakhov, Introduction to the Theory of Finite Groups and their Classes, Vyshejshaja shkola, Minsk, 2006, 207 pp.
[3] B. Huppert, Endliche Gruppen I, Springer, Berlin–Heidelberg–New York, 1967, 796 pp. | MR | Zbl
[4] R. Baer, “Classes of finite groups and their properties”, Illinois J. Math., 1 (1957), 115–187 | MR | Zbl
[5] M. Asaad, A. Shaalan, “On the supersolubility of finite groups”, Arch. Math., 53 (1989), 318–326 | DOI | MR | Zbl
[6] M.J. Alejandre, A. Ballester-Bolinches, J. Cossey, “Permutable products of supersoluble groups”, J. Algebra, 276 (2004), 453–461 | DOI | MR | Zbl
[7] A. Ballester-Bolinches, J. Cossey, M.C. Pedraza-Aguilera, “On products of supersoluble groups”, Rev. Mat. Iberoamericana, 20 (2004), 413–425 | MR | Zbl
[8] J.C. Beidleman, H. Heineken, “Mutually permutable subgroups and group classes”, Arch. Math., 85 (2005), 18–30 | DOI | MR | Zbl
[9] A. Ballester-Bolinches, R. Esteban-Romero, M. Asaad, Products of Finite Groups, Walter de Gruyter, Berlin–New York, 2010, 334 pp. | MR | Zbl