Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2018_1_a10, author = {Yu. V. Malinkovsky and N. N. Borodin}, title = {Queueing networks with finite number of flows of negative customers and with limited sojourn time}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {64--68}, publisher = {mathdoc}, number = {1}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PFMT_2018_1_a10/} }
TY - JOUR AU - Yu. V. Malinkovsky AU - N. N. Borodin TI - Queueing networks with finite number of flows of negative customers and with limited sojourn time JO - Problemy fiziki, matematiki i tehniki PY - 2018 SP - 64 EP - 68 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PFMT_2018_1_a10/ LA - ru ID - PFMT_2018_1_a10 ER -
%0 Journal Article %A Yu. V. Malinkovsky %A N. N. Borodin %T Queueing networks with finite number of flows of negative customers and with limited sojourn time %J Problemy fiziki, matematiki i tehniki %D 2018 %P 64-68 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/PFMT_2018_1_a10/ %G ru %F PFMT_2018_1_a10
Yu. V. Malinkovsky; N. N. Borodin. Queueing networks with finite number of flows of negative customers and with limited sojourn time. Problemy fiziki, matematiki i tehniki, no. 1 (2018), pp. 64-68. http://geodesic.mathdoc.fr/item/PFMT_2018_1_a10/
[1] Yu.V. Malinkovski, “Jackson Networks with Single-Line Nodes and Limited Sojourn or Waiting Times”, Automation and Remote Control, 76:4 (2015), 603–612 | DOI | MR | Zbl
[2] Yu.V. Malinkovskii, “Stationary Probability Distribution for States of G-Networks with Constrained Sojourn Time”, Automation and Remote Control, 78:10 (2017), 1856–1865 | DOI | MR
[3] A.G. Kurosh, Kurs vysshei algebry, Nauka, M., 1971, 432 pp.
[4] P.P. Bocharov, A.V. Pechinkin, Teoriya massovogo obsluzhivaniya, RUDN, M., 1995, 529 pp.
[5] I.I. Gikhman, A.V. Skorokhod, Vvedenie v teoriyu sluchainykh protsessov, Nauka, M., 1977, 568 pp.
[6] E. Gelenbe, “Product-form Queueing Networks with Negative and Positive Customers”, J. Appl. Prob., 28 (1991), 656–663 | DOI | MR | Zbl