Queueing networks with finite number of flows of negative customers and with limited sojourn time
Problemy fiziki, matematiki i tehniki, no. 1 (2018), pp. 64-68.

Voir la notice de l'article provenant de la source Math-Net.Ru

The exponential queueing network with the usual positive and so called negative customers is considered. The sojourn time of customers in the network nodes is limited by the random variable which conditional distribution is exponential when customer quality in node is fixed. The customers serviced in nodes and customers leaving the nodes when sojourn time is completed can stay positive, become negative or leave the network in accordance with different routing matrixes.
Keywords: network, negative customer, limited sojourn time.
@article{PFMT_2018_1_a10,
     author = {Yu. V. Malinkovsky and N. N. Borodin},
     title = {Queueing networks with finite number of flows of negative customers and with limited sojourn time},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {64--68},
     publisher = {mathdoc},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2018_1_a10/}
}
TY  - JOUR
AU  - Yu. V. Malinkovsky
AU  - N. N. Borodin
TI  - Queueing networks with finite number of flows of negative customers and with limited sojourn time
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2018
SP  - 64
EP  - 68
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2018_1_a10/
LA  - ru
ID  - PFMT_2018_1_a10
ER  - 
%0 Journal Article
%A Yu. V. Malinkovsky
%A N. N. Borodin
%T Queueing networks with finite number of flows of negative customers and with limited sojourn time
%J Problemy fiziki, matematiki i tehniki
%D 2018
%P 64-68
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2018_1_a10/
%G ru
%F PFMT_2018_1_a10
Yu. V. Malinkovsky; N. N. Borodin. Queueing networks with finite number of flows of negative customers and with limited sojourn time. Problemy fiziki, matematiki i tehniki, no. 1 (2018), pp. 64-68. http://geodesic.mathdoc.fr/item/PFMT_2018_1_a10/

[1] Yu.V. Malinkovski, “Jackson Networks with Single-Line Nodes and Limited Sojourn or Waiting Times”, Automation and Remote Control, 76:4 (2015), 603–612 | DOI | MR | Zbl

[2] Yu.V. Malinkovskii, “Stationary Probability Distribution for States of G-Networks with Constrained Sojourn Time”, Automation and Remote Control, 78:10 (2017), 1856–1865 | DOI | MR

[3] A.G. Kurosh, Kurs vysshei algebry, Nauka, M., 1971, 432 pp.

[4] P.P. Bocharov, A.V. Pechinkin, Teoriya massovogo obsluzhivaniya, RUDN, M., 1995, 529 pp.

[5] I.I. Gikhman, A.V. Skorokhod, Vvedenie v teoriyu sluchainykh protsessov, Nauka, M., 1977, 568 pp.

[6] E. Gelenbe, “Product-form Queueing Networks with Negative and Positive Customers”, J. Appl. Prob., 28 (1991), 656–663 | DOI | MR | Zbl