Separability of the lattice of $\tau$-closed totally $\omega$-saturated formations of finite groups
Problemy fiziki, matematiki i tehniki, no. 4 (2017), pp. 76-83.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathfrak{X}$ be a non-empty class of finite groups. A complete lattice $\theta$ of formations is said to be $\mathfrak{X}$-separable if for every term $\nu(x_1,\dots, x_n)$ of signature $\{\cap,\lor_\theta\}$, $\theta$-formations $\mathfrak{F}_1,\dots,\mathfrak{F}_n$ and every group $A\in\mathfrak{X}\cap\nu(\mathfrak{F}_1,\dots,\mathfrak{F}_n)$ exists $\mathfrak{X}$-groups $A_1\in \mathfrak{F}_1,\dots, A_n\in\mathfrak{F}_n$, such that $A\in\nu(\theta\mathrm{form}A_1, \dots, \theta\mathrm{form}A_n)$. In particular, if $\mathfrak{X}=\mathfrak{G}$ is the class of all finite groups then the lattice $\theta$ of formations is said to be $\mathfrak{G}$-separable or, briefly, separable. It is proved that the lattice $l^\tau_{\omega_{\infty}}$ of all $\tau$-closed totally $\omega$-saturated formations is $\mathfrak{G}$-separable for any subgroup functor $\tau$.
Keywords: formation of finite groups, $\tau$-closed formation, totally $\omega$-saturated formation, lattice of formations, $\mathfrak{G}$-separated lattice of formations.
@article{PFMT_2017_4_a13,
     author = {V. G. Safonov and I. N. Safonova},
     title = {Separability of the lattice of $\tau$-closed totally $\omega$-saturated formations of finite groups},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {76--83},
     publisher = {mathdoc},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2017_4_a13/}
}
TY  - JOUR
AU  - V. G. Safonov
AU  - I. N. Safonova
TI  - Separability of the lattice of $\tau$-closed totally $\omega$-saturated formations of finite groups
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2017
SP  - 76
EP  - 83
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2017_4_a13/
LA  - ru
ID  - PFMT_2017_4_a13
ER  - 
%0 Journal Article
%A V. G. Safonov
%A I. N. Safonova
%T Separability of the lattice of $\tau$-closed totally $\omega$-saturated formations of finite groups
%J Problemy fiziki, matematiki i tehniki
%D 2017
%P 76-83
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2017_4_a13/
%G ru
%F PFMT_2017_4_a13
V. G. Safonov; I. N. Safonova. Separability of the lattice of $\tau$-closed totally $\omega$-saturated formations of finite groups. Problemy fiziki, matematiki i tehniki, no. 4 (2017), pp. 76-83. http://geodesic.mathdoc.fr/item/PFMT_2017_4_a13/

[1] A.N. Skiba, L.A. Shemetkov, “Kratno $\omega$-lokalnye formatsii i klassy Fittinga konechnykh grupp”, Matem. trudy, 2:2 (1999), 114–147 | Zbl

[2] A.N. Skiba, Algebra formatsii, Belaruskaya navuka, Mn., 1997

[3] V.G. Safonov, K teorii totalno nasyschennykh formatsii konechnykh grupp, Preprint No 15, Gomelskii gos. un-t im. F.Skoriny, Gomel, 2008, 34 pp.

[4] V.G. Safonov, “$\mathfrak{G}$-otdelimost reshetki $\tau$-zamknutykh totalno nasyschennykh formatsii”, Algebra i logika, 49:5 (2010), 692–704

[5] L.A. Shemetkov, A.N. Skiba, N.N. Vorob'ev, “On laws of lattices of partially saturated formations”, Asian-European Journal of Mathematics, 2:1 (2009), 155–169 | DOI | MR | Zbl

[6] V.G. Safonov, V.V. Shcherbina, “On $\mathfrak{G}$-separability of the lattice $l_\infty^\omega$ of totally $\omega$-saturated formations”, The 8th International Algebraic Conference in Ukraine dedicated to the 60th anniversary of Professor Vitaliy Mikhaylovich Usenko (July 5–12, 2011, Luhansk, Ukraine), 125

[7] V.G. Safonov, “Kharakterizatsiya razreshimykh odnoporozhdennykh totalno nasyschennykh formatsii konechnykh grupp”, Sib. matem. zhurnal, 48:1 (2007), 185–191 | Zbl

[8] N.N. Vorobev, “Ob indukivnykh reshetkakh formatsii i klassov Fittinga”, Dokl. NAN Belarusi, 44:3 (2000), 21–24