On an inverse boundary value problem for the second-order elliptic equation with integral condition of the second kind
Problemy fiziki, matematiki i tehniki, no. 4 (2017), pp. 65-70.

Voir la notice de l'article provenant de la source Math-Net.Ru

An inverse problem for the elliptic equation of the second order with periodical boundary conditions is investigated. The definition of a classical solution of the problem is introduced. The essence of the problem is that together with the solution it is required to determine the unknown coefficient. The problem is considered in a rectangular domain. To investigate the solvability of the inverse problem, the conversion from the original problem to the some direct auxiliary problem with trivial boundary conditions is realized. Using the principle of condensed mappings, the existence and uniqueness of the solution of the auxiliary problem are proved. The existence and uniqueness of the classical solution of the original problem are also proved.
Keywords: inverse boundary value problem, Fourier method, classical solution.
Mots-clés : elliptic equation
@article{PFMT_2017_4_a11,
     author = {Y. T. Mehraliev and N. A. Heydarzade},
     title = {On an inverse boundary value problem for the second-order elliptic equation with integral condition of the second kind},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {65--70},
     publisher = {mathdoc},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2017_4_a11/}
}
TY  - JOUR
AU  - Y. T. Mehraliev
AU  - N. A. Heydarzade
TI  - On an inverse boundary value problem for the second-order elliptic equation with integral condition of the second kind
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2017
SP  - 65
EP  - 70
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2017_4_a11/
LA  - ru
ID  - PFMT_2017_4_a11
ER  - 
%0 Journal Article
%A Y. T. Mehraliev
%A N. A. Heydarzade
%T On an inverse boundary value problem for the second-order elliptic equation with integral condition of the second kind
%J Problemy fiziki, matematiki i tehniki
%D 2017
%P 65-70
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2017_4_a11/
%G ru
%F PFMT_2017_4_a11
Y. T. Mehraliev; N. A. Heydarzade. On an inverse boundary value problem for the second-order elliptic equation with integral condition of the second kind. Problemy fiziki, matematiki i tehniki, no. 4 (2017), pp. 65-70. http://geodesic.mathdoc.fr/item/PFMT_2017_4_a11/

[1] D.G. Gordeziani, G.A. Avalishvili, “Resheniya nelokalnykh zadach dlya odnomernykh kolebanii sredy”, Mat. modelirovanie, 12:1 (2000), 94–103 | MR | Zbl

[2] A.V. Bitsadze, A.A. Samarskii, “O nekotorykh prosteishikh obobschennykh lineinykh ellipticheskikh zadach”, DAN SSSR, 185:4 (1969), 739–740 | Zbl

[3] D.G. Gordeziani, “Ob odnom metode resheniya kraevoi zadachi Bitsadze–Samarskogo”, Dokl. seminara IPM Tbilisskogo gosudarstvennogo universiteta, 1970, no. 2, 38–40

[4] D.G. Gordeziani, D.Z. Dzhuaev, “O razreshimosti odnoi kraevoi zadachi dlya nelineinogo uravneniya ellipticheskogo tipa”, Soobscheniya AN GSSR, 68:4 (1972), 289–292 | Zbl

[5] V.V. Solovev, “Obratnye zadachi opredeleniya istochnika dlya uravneniya Puassona na ploskosti”, Zhurn. vychisl. matematiki i mat. fiziki, 44:5 (2004), 862–871 | MR | Zbl

[6] V.V. Solovev, “Obratnye zadachi dlya ellipticheskikh uravnenii na ploskosti”, Differentsialnye uravneniya, 42:8 (2006), 1106–1114 | MR | Zbl

[7] Ya.T. Megraliev, “Obratnaya kraevaya zadacha dlya ellipticheskogo uravneniya vtorogo poryadka”, Vestnik Bakinskogo Universiteta. Seriya fiziko-matematicheskikh nauk, 2011, no. 2, 31–39

[8] Ya.T. Megraliev, “Obratnaya kraevaya zadacha dlya ellipticheskogo uravneniya vtorogo poryadka s dopolnitelnym integralnym usloviem”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Kompyuternye nauki, 2012, no. 1, 32–40 | Zbl

[9] Ya.T. Megraliev, “O razreshimosti odnoi obratnoi kraevoi zadachi dlya ellipticheskogo uravneniya vtorogo poryadka”, Vestnik Tverskogo gosudarstvennogo universiteta. Seriya: Prikladnaya matematika, 2011, no. 23, 25–38

[10] Ya.T. Megraliev, “Ob odnoi obratnoi kraevoi zadache dlya ellipticheskogo uravneniya vtorogo poryadka s integralnym usloviem pervogo roda”, Trudy Instituta matematiki i mekhaniki UrO RAN, 44, no. 1, 2013, 226–235 | MR

[11] E.I. Moiseev, N.Yu. Kapustin, “Ob osobennostyakh kornevogo prostranstva odnoi spektralnoi zadachi so spektralnym parametrom v granichnom uslovii”, Dokl. RAN, 385:1 (2002), 20–24 | MR | Zbl

[12] N.Yu. Kapustin, E.I. Moiseev, “O skhodimosti spektralnykh razlozhenii funktsii iz klassa Geldera dlya dvukh zadach so spektralnym parametrom v granichnom uslovii”, Differentsialnye uravneniya, 36:8 (2000), 1069–1074 | MR | Zbl