The nilpotency criterion for the derived subgroup of a finite group
Problemy fiziki, matematiki i tehniki, no. 3 (2017), pp. 58-60.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the derived subgroup of a finite group is nilpotent if and only if $|ab|\geqslant |a||b|$ for all primary commutators $a$ and $b$ of coprime orders.
Keywords: finite group, commutator, derived subgroup, nilpotent subgroup.
@article{PFMT_2017_3_a9,
     author = {V. S. Monakhov},
     title = {The nilpotency criterion for the derived subgroup of a finite group},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {58--60},
     publisher = {mathdoc},
     number = {3},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2017_3_a9/}
}
TY  - JOUR
AU  - V. S. Monakhov
TI  - The nilpotency criterion for the derived subgroup of a finite group
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2017
SP  - 58
EP  - 60
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2017_3_a9/
LA  - en
ID  - PFMT_2017_3_a9
ER  - 
%0 Journal Article
%A V. S. Monakhov
%T The nilpotency criterion for the derived subgroup of a finite group
%J Problemy fiziki, matematiki i tehniki
%D 2017
%P 58-60
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2017_3_a9/
%G en
%F PFMT_2017_3_a9
V. S. Monakhov. The nilpotency criterion for the derived subgroup of a finite group. Problemy fiziki, matematiki i tehniki, no. 3 (2017), pp. 58-60. http://geodesic.mathdoc.fr/item/PFMT_2017_3_a9/

[1] R. Bastos, P. Shumyatsky, “A sufficient condition for nilpotency of the commutator subgroup”, Siberian Mathematical Journal, 57:5 (2016), 762–763 | DOI | MR | Zbl

[2] D. Gorenstein, Finite groups, Chelsea Publ. Co., New York, 1980, 520 pp. | MR | Zbl

[3] B. Huppert, Endliche Gruppen I, Springer, Berlin–Heidelberg–New York, 1967, 796 pp. | MR | Zbl

[4] B. Baumslag, J. Wiegold, A sufficient condition for nilpotency in a finite group, 10 Nov 2014, arXiv: 1411.2877v1 [math.GR]