On the product of a $B$-group and a primary group
Problemy fiziki, matematiki i tehniki, no. 3 (2017), pp. 52-57.

Voir la notice de l'article provenant de la source Math-Net.Ru

A finite non-nilpotent group $G$ is called a $B$-group if every proper subgroup of the quotient group $G/\Phi(G)$ is nilpotent. The main properties of $B$-groups are established and the group factorized by a primary and a $B$-group is studied. In particular, it is proved that if $G=HK$ is the product of a $B$-subgroup $H$ with a primary subgroup $K$, and if the order of the non-normal Sylow subgroup of $H$ is not equal to $3$ or $7$, then $G$ is solvable.
Keywords: finite group, primary group, product of subgroups.
Mots-clés : $B$-group
@article{PFMT_2017_3_a8,
     author = {V. N. Kniahina},
     title = {On the product of a $B$-group and a primary group},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {52--57},
     publisher = {mathdoc},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2017_3_a8/}
}
TY  - JOUR
AU  - V. N. Kniahina
TI  - On the product of a $B$-group and a primary group
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2017
SP  - 52
EP  - 57
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2017_3_a8/
LA  - ru
ID  - PFMT_2017_3_a8
ER  - 
%0 Journal Article
%A V. N. Kniahina
%T On the product of a $B$-group and a primary group
%J Problemy fiziki, matematiki i tehniki
%D 2017
%P 52-57
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2017_3_a8/
%G ru
%F PFMT_2017_3_a8
V. N. Kniahina. On the product of a $B$-group and a primary group. Problemy fiziki, matematiki i tehniki, no. 3 (2017), pp. 52-57. http://geodesic.mathdoc.fr/item/PFMT_2017_3_a8/

[1] V. S. Monakhov, Vvedenie v teoriyu konechnykh grupp i ikh klassov, Vysheishaya shkola, Minsk, 2006

[2] B. Huppert, Endliche Gruppe, Berlin–Heidelberg–New York, 1967 | MR

[3] O. Yu. Shmidt, “Gruppy, vse podgruppy kotorykh spetsialnye”, Matem. sb., 31 (1924), 366–372

[4] L. A. Shemetkov, Formatsii konechnykh grupp, Nauka, M., 1978

[5] V. S. Monakhov, “Podgruppy Shmidta, ikh suschestvovanie i nekotorye prilozheniya”, Trudy Ukr. matem. kongressa, sektsiya 1 (2001), Institut matematiki NAU, Kiev, 2002, 81–90

[6] Y. Berkovich, “Some corollaries of Frobenius normal $p$-complement theorem”, Proc. Amer. Math. Soc., 127:9 (1999), 2505–2509 | DOI | MR | Zbl

[7] V. S. Monakhov, “Proizvedenie konechnykh grupp, blizkikh k nilpotentnym”, Konechnye gruppy, Nauka i tekhnika, Minsk, 1975, 70–100

[8] H. Wielandt, “Sylow-gruppen and Komposition-Struktur”, Abhandl. Math. Seminar Univ. Hamburg, 22:1 (1958), 215–228 | DOI | MR | Zbl

[9] V. N. Kniahina, V. S. Monakhov, “On supersolvability of finite groups with $\mathbb{P}$-subnormal subgroups”, International Journal of Group Theory, 2:4 (2013), 21–29 | MR | Zbl

[10] L. S. Kazarin, “O $p^\alpha$-lemme Bernsaida”, Matematicheskie zametki, 48:2 (1990), 45–48

[11] V. S. Monakhov, “Proizvedenie biprimarnoi i 2-razlozhimoi grupp”, Matematicheskie zametki, 23:5 (1978), 641–649 | Zbl

[12] I. P. Doktorov, “Ob odnom klasse faktorizuemykh grupp”, Doklady AN BSSR, 13:2 (1969), 101–102 | Zbl