On finite groups with Schmidt subgroups of rank 4
Problemy fiziki, matematiki i tehniki, no. 3 (2017), pp. 48-51.

Voir la notice de l'article provenant de la source Math-Net.Ru

The structure of Hall subgroups of a finite group is considered. All Schmidt subgroups have rank 4.
Keywords: finite group, group of Schmidt, rank of the group, Hall subgroup.
@article{PFMT_2017_3_a7,
     author = {E. V. Zubei},
     title = {On finite groups with {Schmidt} subgroups of rank 4},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {48--51},
     publisher = {mathdoc},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2017_3_a7/}
}
TY  - JOUR
AU  - E. V. Zubei
TI  - On finite groups with Schmidt subgroups of rank 4
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2017
SP  - 48
EP  - 51
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2017_3_a7/
LA  - ru
ID  - PFMT_2017_3_a7
ER  - 
%0 Journal Article
%A E. V. Zubei
%T On finite groups with Schmidt subgroups of rank 4
%J Problemy fiziki, matematiki i tehniki
%D 2017
%P 48-51
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2017_3_a7/
%G ru
%F PFMT_2017_3_a7
E. V. Zubei. On finite groups with Schmidt subgroups of rank 4. Problemy fiziki, matematiki i tehniki, no. 3 (2017), pp. 48-51. http://geodesic.mathdoc.fr/item/PFMT_2017_3_a7/

[1] V. S. Monakhov, Vvedenie v teoriyu konechnykh grupp i ikh klassov, Vysheishaya shkola, Minsk, 2006, 207 pp.

[2] B. Huppert, Endliche Gruppen I, Berlin–Heidelberg–New York, 1967, 796 pp. | MR

[3] B. Huppert, “Normalteiler und maximale Untergruppen endlicher Gruppen”, Math. Zeitschr., 60 (1954), 409–434 | DOI | MR | Zbl

[4] J. Rose, “Sufficient conditions for the existence of ordered Sylow towers in finite groups”, Journal of algebra, 28 (1974), 116–126 | DOI | MR | Zbl

[5] V. S. Monakhov, A. A. Trofimuk, “O konechnykh razreshimykh gruppakh fiksirovannogo ranga”, Sibirskii matematicheskii zhurnal, 52:5 (2011), 1124–1137

[6] V. S. Monakhov, “Podgruppy Shmidta, ikh suschestvovanie i nekotorye prilozheniya”, Trudy Ukr. matem. kongressa, sektsiya 1 (2001), Kiev, 2002, 81–90

[7] O. Yu. Shmidt, “Gruppy, vse podgruppy kotorykh spetsialnye”, Matem. sb., 31 (1924), 366–372

[8] V. S. Monakhov, “O konechnykh gruppakh s zadannym naborom podgrupp Shmidta”, Matem. zametki, 58:5 (1995), 717–722 | Zbl

[9] S. L. Maksimov, V. S. Monakhov, “On classes of finite group with fixed Schmidt subgroups”, Proceedings of the Steklov Institute of Mathematics, 2001, Suppl. 2, 179–185 | MR

[10] S. L. Maksimov, “O konechnykh gruppakh s podgruppami Shmidta ranga 3”, Izvestiya Gomelskogo gosuniversiteta im. F. Skoriny, 2001, no. 3(6), 186–190

[11] S. L. Maksimov, “O konechnykh gruppakh s podgruppami Shmidta ranga 2”, Vestsi NAN Belarusi. Seryya fizika-matematychnykh navuk, 2002, no. 2, 38–41

[12] Yu. A. Golfand, “O gruppakh, vse podgruppy kotorykh spetsialnye”, DAN SSSR, 60:8 (1948), 1313–1315 | Zbl

[13] V. S. Monakhov, “O podgruppakh Shmidta konechnykh grupp”, Voprosy algebry, 13, Izd-vo Gomelskogo un-ta, Gomel, 1998, 153–171

[14] B. Huppert, N. Blackburn, Finite groups II, Springer, Berlin–Heidelberg–New York, 1982 | MR | Zbl