On some new estimates for a gradient of a function in product domains and related results
Problemy fiziki, matematiki i tehniki, no. 3 (2017), pp. 69-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

Some new estimates related to the gradient and derivative of an analytic or harmonic function in Bergman type spaces of analytic and harmonic functions in selfconnected domains are presented. Some new results related with $L^p$-norm estimates of the $n$-th order derivative or with the gradient of an analytic or harmonic function in Bergman type spaces of analytic and harmonic functions or such type multifunctional spaces in the case of simply connected domain in the complex plane $\mathbb{C}$ are considered. New inequalities of a similar type are also presented, in which not only simple simply-connected domains, but their Cartesian product, are involved. Proofs of inequalities of a more complex type are derived either directly from simpler inequalities of the same type, or are completely based on some interesting estimates obtained in the course of their proofs. Such inequalities attracted the attention of various authors in recent years. The theorems given in the article can have various interesting applications in the theory of function of both one and several complex variables.
Keywords: derivative of analytic function, simply connected domains, multi functional spaces, Whitney decomposition.
Mots-clés : gradient, product of domains
@article{PFMT_2017_3_a12,
     author = {R. F. Shamoyan and S. P. Maksakov},
     title = {On some new estimates for a gradient of a function in product domains and related results},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {69--74},
     publisher = {mathdoc},
     number = {3},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2017_3_a12/}
}
TY  - JOUR
AU  - R. F. Shamoyan
AU  - S. P. Maksakov
TI  - On some new estimates for a gradient of a function in product domains and related results
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2017
SP  - 69
EP  - 74
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2017_3_a12/
LA  - en
ID  - PFMT_2017_3_a12
ER  - 
%0 Journal Article
%A R. F. Shamoyan
%A S. P. Maksakov
%T On some new estimates for a gradient of a function in product domains and related results
%J Problemy fiziki, matematiki i tehniki
%D 2017
%P 69-74
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2017_3_a12/
%G en
%F PFMT_2017_3_a12
R. F. Shamoyan; S. P. Maksakov. On some new estimates for a gradient of a function in product domains and related results. Problemy fiziki, matematiki i tehniki, no. 3 (2017), pp. 69-74. http://geodesic.mathdoc.fr/item/PFMT_2017_3_a12/

[1] V. Mazya, Sobolev spaces, Springer-Verlag, 1985 | MR | Zbl

[2] H. Federer, Geometric measure theory, Springer-Verlag, 1969 | MR | Zbl

[3] D. Adams, L. Hedberg, Function spaces and potential theory, Springer-Verlag, 1996 | MR

[4] J. Heinonen, Lectures on analysis on metric spaces, Springer-Verlag, 2001 | MR | Zbl

[5] A. M. Shihvatov, “On the $L^p$-space of functions analytic in a region with piecewise analytic boundary”, Mathematical Notes, 20:4 (1976), 537–548 | MR

[6] J. Burbea, “The Bergman projection over plane regions”, Ark. Math., 18:1 (1980), 207–221 | DOI | MR | Zbl

[7] A. A. Solovyov, “Estimates in $L^p$ for integral operators associated with the space of analytic and harmonic functions”, Siberian Mathematical Journal, 26:3 (1985), 168–191 | MR

[8] H. Hedenmalm, “The dual of Bergman space on simply connected domains”, J. d' Analyse Mathematique, 88 (2002), 311–335 | DOI | MR | Zbl

[9] N. M. Tkachenko (Makhina), Weighted $L^p$ estimates analytic and harmonic functions in a simply domains of complex plane, Ph. D. Dissertation: 01.01.01, Bryansk, 2009, 124 pp. (in Russian)

[10] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, New Jersey, 1970 | MR | Zbl

[11] R. F. Shamoyan, S. Li, “On some estimates for multifunctional analytic spaces and new characterizations of Carleson type measures in the unit ball”, Bulletin des Sciences Mathematiques, 134:2 (2010), 144–154 | DOI | MR | Zbl

[12] R. F. Shamoyan, M. Arsenovic, “Embedding relations and boundedness of multifunctional operators in tube domains over symmetric cones”, Filomat., 25:4 (2011), 109–126 | DOI | MR | Zbl

[13] R. F. Shamoyan, M. Arsenovic, “On distance estimates and atomic decomposition in spaces of analytic functions in strictly pseudoconvex domains”, Bulletin of Korean Mathematical Society, 52:1 (2015), 85–103 | DOI | MR | Zbl

[14] N. M. Tkachenko (Makhina), “On estimates of the derivative of an analytic function in $L^p$-weighted spaces”, The Bryansk State University Vestnik, 4 (2006), 194–197 (in Russian)

[15] N. M. Tkachenko (Makhina), “Estimates of the derivative of an analytic function in domains with the angles”, Journal of Izhevsk State Technical University, 1(37) (2008), 96–98 (in Russian)

[16] D. Bekolle et al., “Lecture notes on Bergman projectors in tube domains over cones”, Procedings of the international Workshop on classical Analysis (Yaounde, 2001) | MR