Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2017_3_a12, author = {R. F. Shamoyan and S. P. Maksakov}, title = {On some new estimates for a gradient of a function in product domains and related results}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {69--74}, publisher = {mathdoc}, number = {3}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PFMT_2017_3_a12/} }
TY - JOUR AU - R. F. Shamoyan AU - S. P. Maksakov TI - On some new estimates for a gradient of a function in product domains and related results JO - Problemy fiziki, matematiki i tehniki PY - 2017 SP - 69 EP - 74 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PFMT_2017_3_a12/ LA - en ID - PFMT_2017_3_a12 ER -
R. F. Shamoyan; S. P. Maksakov. On some new estimates for a gradient of a function in product domains and related results. Problemy fiziki, matematiki i tehniki, no. 3 (2017), pp. 69-74. http://geodesic.mathdoc.fr/item/PFMT_2017_3_a12/
[1] V. Mazya, Sobolev spaces, Springer-Verlag, 1985 | MR | Zbl
[2] H. Federer, Geometric measure theory, Springer-Verlag, 1969 | MR | Zbl
[3] D. Adams, L. Hedberg, Function spaces and potential theory, Springer-Verlag, 1996 | MR
[4] J. Heinonen, Lectures on analysis on metric spaces, Springer-Verlag, 2001 | MR | Zbl
[5] A. M. Shihvatov, “On the $L^p$-space of functions analytic in a region with piecewise analytic boundary”, Mathematical Notes, 20:4 (1976), 537–548 | MR
[6] J. Burbea, “The Bergman projection over plane regions”, Ark. Math., 18:1 (1980), 207–221 | DOI | MR | Zbl
[7] A. A. Solovyov, “Estimates in $L^p$ for integral operators associated with the space of analytic and harmonic functions”, Siberian Mathematical Journal, 26:3 (1985), 168–191 | MR
[8] H. Hedenmalm, “The dual of Bergman space on simply connected domains”, J. d' Analyse Mathematique, 88 (2002), 311–335 | DOI | MR | Zbl
[9] N. M. Tkachenko (Makhina), Weighted $L^p$ estimates analytic and harmonic functions in a simply domains of complex plane, Ph. D. Dissertation: 01.01.01, Bryansk, 2009, 124 pp. (in Russian)
[10] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, New Jersey, 1970 | MR | Zbl
[11] R. F. Shamoyan, S. Li, “On some estimates for multifunctional analytic spaces and new characterizations of Carleson type measures in the unit ball”, Bulletin des Sciences Mathematiques, 134:2 (2010), 144–154 | DOI | MR | Zbl
[12] R. F. Shamoyan, M. Arsenovic, “Embedding relations and boundedness of multifunctional operators in tube domains over symmetric cones”, Filomat., 25:4 (2011), 109–126 | DOI | MR | Zbl
[13] R. F. Shamoyan, M. Arsenovic, “On distance estimates and atomic decomposition in spaces of analytic functions in strictly pseudoconvex domains”, Bulletin of Korean Mathematical Society, 52:1 (2015), 85–103 | DOI | MR | Zbl
[14] N. M. Tkachenko (Makhina), “On estimates of the derivative of an analytic function in $L^p$-weighted spaces”, The Bryansk State University Vestnik, 4 (2006), 194–197 (in Russian)
[15] N. M. Tkachenko (Makhina), “Estimates of the derivative of an analytic function in domains with the angles”, Journal of Izhevsk State Technical University, 1(37) (2008), 96–98 (in Russian)
[16] D. Bekolle et al., “Lecture notes on Bergman projectors in tube domains over cones”, Procedings of the international Workshop on classical Analysis (Yaounde, 2001) | MR