Finite groups with $n\Phi$-subgroups of prime orders
Problemy fiziki, matematiki i tehniki, no. 3 (2017), pp. 66-68

Voir la notice de l'article provenant de la source Math-Net.Ru

A subgroup $H$ of a group $G$ is called $n\Phi$-subgroup in $G$ if there exists a normal subgroup $K$ of $G$ such that $G=HK$ and $H\cap K\leqslant \Phi(H)$. It has been proved that any formation admits characterization by certain $n\Phi$-subgroups of prime orders.
Keywords: finite group, normal subgroup, Sylow subgroup, $\mathfrak{F}$-coradical, nilpotent group, Abelian group.
Mots-clés : complement
@article{PFMT_2017_3_a11,
     author = {D. A. Khadanovich},
     title = {Finite groups with  $n\Phi$-subgroups of prime orders},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {66--68},
     publisher = {mathdoc},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2017_3_a11/}
}
TY  - JOUR
AU  - D. A. Khadanovich
TI  - Finite groups with  $n\Phi$-subgroups of prime orders
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2017
SP  - 66
EP  - 68
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2017_3_a11/
LA  - ru
ID  - PFMT_2017_3_a11
ER  - 
%0 Journal Article
%A D. A. Khadanovich
%T Finite groups with  $n\Phi$-subgroups of prime orders
%J Problemy fiziki, matematiki i tehniki
%D 2017
%P 66-68
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2017_3_a11/
%G ru
%F PFMT_2017_3_a11
D. A. Khadanovich. Finite groups with  $n\Phi$-subgroups of prime orders. Problemy fiziki, matematiki i tehniki, no. 3 (2017), pp. 66-68. http://geodesic.mathdoc.fr/item/PFMT_2017_3_a11/