Power properties of vector vortex beams of Laplace--Gauss
Problemy fiziki, matematiki i tehniki, no. 3 (2017), pp. 13-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

The expressions for vectors of the field, density of energy and density of energy flows are received for vector vortex beams of Laplace–Gauss. Analytically spatial structure of longitudinal and track densities of energy flows is investigated. The executed graphic modeling of crossflows of energy supplements analytical conclusions.
Keywords: vector beams, Laplace–Gauss beams, vortex beams, power properties.
@article{PFMT_2017_3_a1,
     author = {S. S. Girgel},
     title = {Power properties of vector vortex beams of {Laplace--Gauss}},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {13--17},
     publisher = {mathdoc},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2017_3_a1/}
}
TY  - JOUR
AU  - S. S. Girgel
TI  - Power properties of vector vortex beams of Laplace--Gauss
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2017
SP  - 13
EP  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2017_3_a1/
LA  - ru
ID  - PFMT_2017_3_a1
ER  - 
%0 Journal Article
%A S. S. Girgel
%T Power properties of vector vortex beams of Laplace--Gauss
%J Problemy fiziki, matematiki i tehniki
%D 2017
%P 13-17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2017_3_a1/
%G ru
%F PFMT_2017_3_a1
S. S. Girgel. Power properties of vector vortex beams of Laplace--Gauss. Problemy fiziki, matematiki i tehniki, no. 3 (2017), pp. 13-17. http://geodesic.mathdoc.fr/item/PFMT_2017_3_a1/

[1] E. G. Abramochkin, V. G. Volostnikov, Sovremennaya optika gaussovykh puchkov, Fizmatlit, M., 2010, 184 pp.

[2] Yu. A. Ananev, Opticheskie rezonatory i lazernye puchki, Nauka, M., 1990, 264 pp.

[3] A. V. Volyar, T. A. Fadeeva, Yu. A. Egorov, “Vektornye singulyarnosti gaussovykh puchkov v odnoosnykh kristallakh: generatsiya opticheskikh vikhrei”, Pisma v ZhTF, 28:22 (2002), 70–77

[4] A. P. Kiselev, “Lokalizovannye svetovye volny: paraksialnye i tochnye resheniya volnovogo uravneniya (obzor)”, Optika i spektroskopiya, 102:4 (2007), 661–681

[5] Jochen Arlt, “Handedness and azimuthal energy flow of optical vortex beams”, Journal of Modern Optics, 50:10 (2003), 1573–1580 | DOI

[6] M. V. Berry, M. R. Dennis, “Reconnections of wave vortex lines”, Eur. J. Phys., 33:1 (2012), 723–731 | DOI | Zbl

[7] A. Y. Bekshaev, M. S. Soskin, “Transverse energy flows in vectorial fields of paraxial beams with singularities”, Opt. Communs., 271 (2007), 332–348 | DOI

[8] A. Bekshaev, K. Bliokh, M. Soskin, “Internal flows and energy circulation in light beams”, Journal of Optics, 13:5 (2011), 053001, 32 pp. | DOI

[9] M. V. Berry, “Optical vortices evolving from helicoidal integer and fractional phase steps”, Journal of Optics, 2003, no. 6, 259–268

[10] Dongmei Deng et al., “Propagation of an Airy vortex beam in uniaxial crystals”, Appl. Phys. B, 110 (2013), 433–436

[11] V. V. Kotlyar, A. A. Kovalev, A. P. Porfirev, “Vortex Hermite–Gaussian laser beams”, Optics Letters, 40:5 (2015), 701–704 | DOI

[12] Miguel A. Bandres, Julio C. Gutierrez-Vega, “Vector Helmholtz–Gauss and vector Laplace–Gauss beams”, Optics Letters, 30:16 (2005), 2155–2057 | DOI | MR

[13] Julio C. Gutierrez-Vega, Miguel A. Bandres, “Helmholtz–Gauss waves”, J. Opt. Soc. Am. A, 25:2 (2005), 289–298 | MR

[14] S. S. Girgel, “Svoistva vektornykh paraksialnykh svetovykh puchkov. I. Odnorodnaya polyarizatsiya”, Problemy fiziki, matematiki i tekhniki, 2011, no. 1(6), 20–24

[15] S. S. Girgel, “Polyarizatsionnye i energeticheskie svoistva vektornykh gaussovopodobnykh puchkov. I. Odnorodnaya polyarizatsiya”, Problemy fiziki, matematiki i tekhniki, 2016, no. 1(26), 17–21

[16] M. Born, E. Volf, Osnovy optiki, Nauka, M., 1970, 587 pp.

[17] F. I. Fedorov, Optika anizotropnykh sred, Izd-vo AN BSSR, Mn., 1976, 380 pp.

[18] M. V. Berry, “Optical currents”, Journal of Optics A: Pure Appl. Opt., 11:9 (2009), 094001, 12 pp. | DOI

[19] S. S. Girgel, “Polyarizatsionnye i energeticheskie svoistva vektornykh paraksialnykh gaussovykh svetovykh puchkov”, Problemy fiziki, matematiki i tekhniki, 2012, no. 3(12), 19–24

[20] C. C. Girgel, “Skalyarnye astigmaticheskie 3D svetovye puchki Kummera–Gaussa”, Problemy fiziki, matematiki i tekhniki, 2013, no. 1(13), 11–16

[21] A. M. Goncharenko, Gaussovy puchki sveta, Nauka i tekhnika, Mn., 1977, 142 pp.

[22] N. E. Kochin, Vektornoe ischislenie i nachala tenzornogo ischisleniya, Izd-vo AN SSSR, M., 1951, 426 pp.