Intersections of maximal subgroups in a finite group in connection with the local formations and a generally abnormally full subgroup $m$-functor
Problemy fiziki, matematiki i tehniki, no. 2 (2017), pp. 31-39

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\pi$ be a set of primes. The sufficient conditions that must satisfy a local formation $\mathfrak{F}=\mathfrak{G}_{\pi}\mathfrak{F}$, a finite group $G$ and a subgroup $m$-functor $\theta$, under which $\overline{\Delta}_{\pi}^{\mathfrak{F}}(G)=\Phi_{\theta_{\pi}}^{\mathfrak{F}}(G)=\Delta_{\pi}^{\mathfrak{F}}(G)\in\mathfrak{F}$ also $\overline{\Delta}_{\pi,\overline{G_{\mathfrak{F}}}}^{\mathfrak{F}}(G)=\Phi_{\theta_{\pi},\overline{G_{\mathfrak{F}}}}^{\mathfrak{F}}(G)=\Phi_{\theta_{\pi}}^{\mathfrak{F}}(G)=\Delta_{\pi}^{\mathfrak{F}}(G)\subset G_{\mathfrak{F}}\subset G$, if $\mathfrak{F}=\mathfrak{G}_{\pi}\mathfrak{F}$ is radical, are achieved. As the consequences of the main results there were obtained the assertions for $\pi=\varnothing$ and corresponding local formations.
Keywords: maximal subgroups of finite groups, local and local radical formations, subgroup $m$-functor.
@article{PFMT_2017_2_a5,
     author = {L. M. Belokon},
     title = {Intersections of maximal subgroups in a finite group in connection with the local formations and a generally abnormally full subgroup $m$-functor},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {31--39},
     publisher = {mathdoc},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2017_2_a5/}
}
TY  - JOUR
AU  - L. M. Belokon
TI  - Intersections of maximal subgroups in a finite group in connection with the local formations and a generally abnormally full subgroup $m$-functor
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2017
SP  - 31
EP  - 39
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2017_2_a5/
LA  - ru
ID  - PFMT_2017_2_a5
ER  - 
%0 Journal Article
%A L. M. Belokon
%T Intersections of maximal subgroups in a finite group in connection with the local formations and a generally abnormally full subgroup $m$-functor
%J Problemy fiziki, matematiki i tehniki
%D 2017
%P 31-39
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2017_2_a5/
%G ru
%F PFMT_2017_2_a5
L. M. Belokon. Intersections of maximal subgroups in a finite group in connection with the local formations and a generally abnormally full subgroup $m$-functor. Problemy fiziki, matematiki i tehniki, no. 2 (2017), pp. 31-39. http://geodesic.mathdoc.fr/item/PFMT_2017_2_a5/