Asymptotics of Hermite--Pad\'e degenerate hypergeometric functions
Problemy fiziki, matematiki i tehniki, no. 2 (2017), pp. 69-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

The asymptotic behavior of diagonal Hermite–Padé polynomials and diagonal Hermite–Padé approximations of type II for the system $\{_1F_1(1,\gamma;\lambda_jz)\}_{j=1}^k$, consisting of degenerate hypergeometric functions in which while the rest $\{\lambda_j\}_{j=1}^k$ are the roots of the equation $\lambda^k=1$, $\gamma$ — is a complex number belonging to the set $\mathbb{C}\setminus\{0,-1,-2,\dots\}$ was stated. The theorems complement known results of H. Padé, D. Braess, A.I. Aptekarev, H. Stahl, F. Wielonsky, W. Van Assche, A. B. J. Kuijlaars, A.P. Starovoitov, obtained for the case, where the $\{\lambda_p\}_{p=0}^k$ — different real numbers.
Keywords: Hermite integrals, Hermite–Padé polynomials, Hermite–Padé approximations, asymptotic equality, degenerate hypergeometric functions.
@article{PFMT_2017_2_a11,
     author = {M. V. Sidortsov and A. A. Drapeza and A. P. Starovoitov},
     title = {Asymptotics of {Hermite--Pad\'e} degenerate hypergeometric functions},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {69--74},
     publisher = {mathdoc},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2017_2_a11/}
}
TY  - JOUR
AU  - M. V. Sidortsov
AU  - A. A. Drapeza
AU  - A. P. Starovoitov
TI  - Asymptotics of Hermite--Pad\'e degenerate hypergeometric functions
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2017
SP  - 69
EP  - 74
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2017_2_a11/
LA  - ru
ID  - PFMT_2017_2_a11
ER  - 
%0 Journal Article
%A M. V. Sidortsov
%A A. A. Drapeza
%A A. P. Starovoitov
%T Asymptotics of Hermite--Pad\'e degenerate hypergeometric functions
%J Problemy fiziki, matematiki i tehniki
%D 2017
%P 69-74
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2017_2_a11/
%G ru
%F PFMT_2017_2_a11
M. V. Sidortsov; A. A. Drapeza; A. P. Starovoitov. Asymptotics of Hermite--Pad\'e degenerate hypergeometric functions. Problemy fiziki, matematiki i tehniki, no. 2 (2017), pp. 69-74. http://geodesic.mathdoc.fr/item/PFMT_2017_2_a11/

[1] E.M. Nikishin, V.N. Sorokin, Ratsionalnye approksimatsii i ortogonalnost, Nauka, M., 1988

[2] H. Stahl, “Asymptotics for quadratic Hermite–Padé polynomals associated with the exponential function”, Electronic Trans. Num. Anal., 2002, no. 14, 193–220 | MR

[3] C. Hermite, “Sur la fonction exponentielle”, C.R. Akad. Sci. (Paris), 77 (1873), 18–293

[4] F. Klein, Elementarnaya matematika s tochki zreniya vysshei, v 2-kh tomakh, v. 1, Arifmetika. Algebra. Analiz, Nauka, M., 1987

[5] S.P. Suetin, “Approksimatsii Pade i effektivnoe analiticheskoe prodolzhenie stepennogo ryada”, Uspekhi matem. nauk, 57:1 (2002), 45–142 | DOI | Zbl

[6] S.P. Suetin, “Raspredelenie nulei polinomov Pade i analiticheskoe prodolzhenie”, Uspekhi matem. nauk, 70:5(425) (2015), 121–174 | DOI | Zbl

[7] W. Van Assche, “Continued fractions: from analytic number theory to constructive approximation”, Contemp. Math., 236, Amer. Math. Soc., 1999, 325–342 | DOI | Zbl

[8] A.I. Aptekarev, H. Stahl, “Asymptotics of Hermite–Pade polynomials”, Progress in Approximation Theory, eds. A.A. Gonchar, E. B. Saff, Springer-Verlag, New York–Berlin, 1992 | MR | Zbl

[9] A.I. Aptekarev, V.I. Buslaev, A. Martines-Finkelshtein, S.P. Suetin, “Approksimatsii Pade, nepreryvnye drobi i ortogonalnye mnogochleny”, Uspekhi matem. nauk, 66:6(402) (2011), 37–122 | DOI | Zbl

[10] A.I. Aptekarev, A.E. Koielaars, “Approksimatsii Ermita–Pade i ansambli sovmestno ortogonalnykh mnogochlenov”, Uspekhi matem. nauk, 66:6(402) (2011), 123–190 | DOI | Zbl

[11] A.I. Aptekarev, “O skhodimosti ratsionalnykh approksimatsii k naboru eksponent”, Vestnik MGU. Seriya 1. Matematika. Mekhanika, 1981, no. 1, 68–74

[12] O. Perron, Die Lehre von den Kettenbruchen, Teubner, Leipzig–Berlin, 1929 | MR | Zbl

[13] H. Van Rossum, “Systems of orthogonal and quasi-orthogonal polynomials connected with the Pade table I, II and III”, K. Nederl. Akad. Wetensch., Ser. A, 58 (1955), 517–534 ; 675–682 | DOI | MR | Zbl

[14] M.G. De Bruin, “Convergence of the Padé table for $_1F_1(1;c;x)$”, K. Nederl. Akad. Wetensch., 79 (1976), 408–418 | DOI | MR | Zbl

[15] A.P. Starovoitov, N.A. Starovoitova, “Approksimatsii Pade funktsii Mittag–Lefflera”, Matem. sbornik, 198:7 (2007), 109–122 | DOI | Zbl

[16] D. Braess, “On the conjecture of Meinardus on rational approximation of $e^x$, II”, J. Approx. Theory, 40:4 (1984), 375–379 | DOI | MR | Zbl

[17] A.I. Aptekarev, “Ob approksimatsiyakh Pade k naboru $\{_1F_1(1,c;\lambda_iz)\}_{i=1}^k$”, Vestnik MGU. Seriya 1. Matematika. Mekhanika, 1981, no. 2, 58–62

[18] A.B.J. Kuijlaars, H. Stahl, W. Van Assche, F. Wielonsky, “Type II Hermite–Pade approximation to the exponential function”, J. of Comput. and Appl. Math., 207 (2007), 227–244 | DOI | MR | Zbl

[19] A.P. Starovoitov, “Asimptotika approksimatsii Ermita–Pade sistemy eksponent”, Doklady Natsionalnoi akademii nauk Belarusi, 57:2 (2013), 5–10 | Zbl

[20] A.P. Starovoitov, “O svoistvakh approksimatsii Ermita–Pade dlya sistemy funktsii Mittag–Lefflera”, Doklady Natsionalnoi akademii nauk Belarusi, 57:1 (2013), 5–10 | Zbl

[21] A.P. Starovoitov, “Approksimatsii Ermita–Pade dlya sistemy funktsii Mittag–Lefflera”, Problemy fiziki, matematiki i tekhniki, 2013, no. 1(14), 81–87

[22] A.P. Starovoitov, “Ob asimptotike approksimatsii Ermita–Pade dlya sistemy funktsii Mittag–Lefflera”, Izvestiya vuzov. Matematika, 2014, no. 9, 59–68

[23] A.P. Starovoitov, “Ermitovskaya approksimatsiya dvukh eksponent”, Izvestiya Saratovskogo universiteta. Novaya seriya. Seriya Matematika. Mekhanika. Informatika, 13:1(2) (2013), 88–91 | Zbl

[24] A.V. Astafeva, A.P. Starovoitov, “Asimptoticheskie svoistva mnogochlenov Ermita”, Doklady Natsionalnoi akademii nauk Belarusi, 59:3 (2015), 5–11

[25] A.V. Astafeva, A.P. Starovoitov, “Approksimatsii Ermita–Pade eksponentsialnykh funktsii”, Matem. sbornik, 207:6 (2016), 3–26 | DOI

[26] A.P. Starovoitov, E.P. Kechko, “Verkhnie otsenki modulei nulei approksimatsii Ermita–Pade dlya nabora eksponentsialnykh funktsii”, Matem. zametki, 99:3 (2016), 409–420 | DOI | Zbl

[27] Yu.V. Sidorov, M.V. Fedoryuk, M.I. Shabunin, Lektsii po teorii funktsii kompleksnogo peremennogo, Nauka, M., 1989