Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2017_2_a11, author = {M. V. Sidortsov and A. A. Drapeza and A. P. Starovoitov}, title = {Asymptotics of {Hermite--Pad\'e} degenerate hypergeometric functions}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {69--74}, publisher = {mathdoc}, number = {2}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PFMT_2017_2_a11/} }
TY - JOUR AU - M. V. Sidortsov AU - A. A. Drapeza AU - A. P. Starovoitov TI - Asymptotics of Hermite--Pad\'e degenerate hypergeometric functions JO - Problemy fiziki, matematiki i tehniki PY - 2017 SP - 69 EP - 74 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PFMT_2017_2_a11/ LA - ru ID - PFMT_2017_2_a11 ER -
M. V. Sidortsov; A. A. Drapeza; A. P. Starovoitov. Asymptotics of Hermite--Pad\'e degenerate hypergeometric functions. Problemy fiziki, matematiki i tehniki, no. 2 (2017), pp. 69-74. http://geodesic.mathdoc.fr/item/PFMT_2017_2_a11/
[1] E.M. Nikishin, V.N. Sorokin, Ratsionalnye approksimatsii i ortogonalnost, Nauka, M., 1988
[2] H. Stahl, “Asymptotics for quadratic Hermite–Padé polynomals associated with the exponential function”, Electronic Trans. Num. Anal., 2002, no. 14, 193–220 | MR
[3] C. Hermite, “Sur la fonction exponentielle”, C.R. Akad. Sci. (Paris), 77 (1873), 18–293
[4] F. Klein, Elementarnaya matematika s tochki zreniya vysshei, v 2-kh tomakh, v. 1, Arifmetika. Algebra. Analiz, Nauka, M., 1987
[5] S.P. Suetin, “Approksimatsii Pade i effektivnoe analiticheskoe prodolzhenie stepennogo ryada”, Uspekhi matem. nauk, 57:1 (2002), 45–142 | DOI | Zbl
[6] S.P. Suetin, “Raspredelenie nulei polinomov Pade i analiticheskoe prodolzhenie”, Uspekhi matem. nauk, 70:5(425) (2015), 121–174 | DOI | Zbl
[7] W. Van Assche, “Continued fractions: from analytic number theory to constructive approximation”, Contemp. Math., 236, Amer. Math. Soc., 1999, 325–342 | DOI | Zbl
[8] A.I. Aptekarev, H. Stahl, “Asymptotics of Hermite–Pade polynomials”, Progress in Approximation Theory, eds. A.A. Gonchar, E. B. Saff, Springer-Verlag, New York–Berlin, 1992 | MR | Zbl
[9] A.I. Aptekarev, V.I. Buslaev, A. Martines-Finkelshtein, S.P. Suetin, “Approksimatsii Pade, nepreryvnye drobi i ortogonalnye mnogochleny”, Uspekhi matem. nauk, 66:6(402) (2011), 37–122 | DOI | Zbl
[10] A.I. Aptekarev, A.E. Koielaars, “Approksimatsii Ermita–Pade i ansambli sovmestno ortogonalnykh mnogochlenov”, Uspekhi matem. nauk, 66:6(402) (2011), 123–190 | DOI | Zbl
[11] A.I. Aptekarev, “O skhodimosti ratsionalnykh approksimatsii k naboru eksponent”, Vestnik MGU. Seriya 1. Matematika. Mekhanika, 1981, no. 1, 68–74
[12] O. Perron, Die Lehre von den Kettenbruchen, Teubner, Leipzig–Berlin, 1929 | MR | Zbl
[13] H. Van Rossum, “Systems of orthogonal and quasi-orthogonal polynomials connected with the Pade table I, II and III”, K. Nederl. Akad. Wetensch., Ser. A, 58 (1955), 517–534 ; 675–682 | DOI | MR | Zbl
[14] M.G. De Bruin, “Convergence of the Padé table for $_1F_1(1;c;x)$”, K. Nederl. Akad. Wetensch., 79 (1976), 408–418 | DOI | MR | Zbl
[15] A.P. Starovoitov, N.A. Starovoitova, “Approksimatsii Pade funktsii Mittag–Lefflera”, Matem. sbornik, 198:7 (2007), 109–122 | DOI | Zbl
[16] D. Braess, “On the conjecture of Meinardus on rational approximation of $e^x$, II”, J. Approx. Theory, 40:4 (1984), 375–379 | DOI | MR | Zbl
[17] A.I. Aptekarev, “Ob approksimatsiyakh Pade k naboru $\{_1F_1(1,c;\lambda_iz)\}_{i=1}^k$”, Vestnik MGU. Seriya 1. Matematika. Mekhanika, 1981, no. 2, 58–62
[18] A.B.J. Kuijlaars, H. Stahl, W. Van Assche, F. Wielonsky, “Type II Hermite–Pade approximation to the exponential function”, J. of Comput. and Appl. Math., 207 (2007), 227–244 | DOI | MR | Zbl
[19] A.P. Starovoitov, “Asimptotika approksimatsii Ermita–Pade sistemy eksponent”, Doklady Natsionalnoi akademii nauk Belarusi, 57:2 (2013), 5–10 | Zbl
[20] A.P. Starovoitov, “O svoistvakh approksimatsii Ermita–Pade dlya sistemy funktsii Mittag–Lefflera”, Doklady Natsionalnoi akademii nauk Belarusi, 57:1 (2013), 5–10 | Zbl
[21] A.P. Starovoitov, “Approksimatsii Ermita–Pade dlya sistemy funktsii Mittag–Lefflera”, Problemy fiziki, matematiki i tekhniki, 2013, no. 1(14), 81–87
[22] A.P. Starovoitov, “Ob asimptotike approksimatsii Ermita–Pade dlya sistemy funktsii Mittag–Lefflera”, Izvestiya vuzov. Matematika, 2014, no. 9, 59–68
[23] A.P. Starovoitov, “Ermitovskaya approksimatsiya dvukh eksponent”, Izvestiya Saratovskogo universiteta. Novaya seriya. Seriya Matematika. Mekhanika. Informatika, 13:1(2) (2013), 88–91 | Zbl
[24] A.V. Astafeva, A.P. Starovoitov, “Asimptoticheskie svoistva mnogochlenov Ermita”, Doklady Natsionalnoi akademii nauk Belarusi, 59:3 (2015), 5–11
[25] A.V. Astafeva, A.P. Starovoitov, “Approksimatsii Ermita–Pade eksponentsialnykh funktsii”, Matem. sbornik, 207:6 (2016), 3–26 | DOI
[26] A.P. Starovoitov, E.P. Kechko, “Verkhnie otsenki modulei nulei approksimatsii Ermita–Pade dlya nabora eksponentsialnykh funktsii”, Matem. zametki, 99:3 (2016), 409–420 | DOI | Zbl
[27] Yu.V. Sidorov, M.V. Fedoryuk, M.I. Shabunin, Lektsii po teorii funktsii kompleksnogo peremennogo, Nauka, M., 1989