Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2017_2_a1, author = {S. S. Girgel}, title = {Generalized asymmetric of {Bessel--Gaussian} beams of the continuous order}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {10--14}, publisher = {mathdoc}, number = {2}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PFMT_2017_2_a1/} }
S. S. Girgel. Generalized asymmetric of Bessel--Gaussian beams of the continuous order. Problemy fiziki, matematiki i tehniki, no. 2 (2017), pp. 10-14. http://geodesic.mathdoc.fr/item/PFMT_2017_2_a1/
[1] A.P. Kiselev, “Lokalizovannye svetovye volny: paraksialnye i tochnye resheniya volnovogo uravneniya (obzor)”, Optika i spektroskopiya, 102:4 (2007), 661–681
[2] Julio C. Gutierrez-Vega, “Fractionalization of optical beams: I. Planar Analysis”, Optics Letters, 32:11 (2007), 1521–1523 | DOI
[3] Julio C. Gutierrez-Vega, “Fractionalization of optical beams: II. Elegant Laguerre–Gaussian modes”, Optics Express, 15:10 (2007), 6300–6313 | DOI
[4] J.C. Gutierrez-Vega, C. Lopez-Mariscal, “Nondiffracting vortex beams with continuous orbital angular momentum order dependence”, J. Opt. A. Pure Appl. Opt., 2008, 10015009, 8 pp.
[5] Shao Hua Tao, Woei Ming Lee, Xiaocong Yuan, “Experimental study of holographic generation of fractional Bessel beams”, Applied Optics, 43:1 (2004), 122–126 | DOI
[6] J. Durnin, “Exact solutions for nondiffracting beams. I. The scalar theory”, JOSA A, 4:4 (1987), 651–654 | DOI
[7] F. Gori, G. Guattari, C. Padovani, “Bessel–Gauss beams”, Optics Communications, 64:6 (1987), 491–495 | DOI
[8] V. Bagini et al., “Generalized Bessel–Gauss beams”, Journal of Modern Optics, 43:6 (1996), 1155–1166 | MR | Zbl
[9] C. Palma et al., “Imaging of generalized Bessel–Gauss beams”, Journal of Modern Optics, 43:11 (1996), 2269–2277 | DOI
[10] M. Santarsiero, “Propagation of general Bessel–Gauss beams throught ABCD optical systems”, Optics Communications, 132 (1996), 1–7 | DOI
[11] V.V. Kotlyar, A.A. Kovalev, V. A. Soifer, “Bezdifraktsionnye asimmetrichnye elegantnye puchki Besselya s drobnym orbitalnym uglovym momentom”, Kompyuternaya optika, 38:1 (2014), 4–9
[12] S.S. Girgel, “Polyarizatsionnye svoistva bessel-gaussovykh puchkov sveta”, Izvestiya Gomelskogo gosuniversiteta im. F. Skoriny, 2001, no. 6(9), 150–154
[13] S.S. Girgel, “Polyarizatsionnye i energeticheskie svoistva vektornykh bessel-gaussovykh svetovykh puchkov”, Izvestiya Gomelskogo gosuniversiteta im. F. Skoriny, 6(39):1 (2006), 49–52 | Zbl
[14] C.C. Girgel, “Obobschennye puchki Besselya–Gaussa nepreryvnogo poryadka”, Problemy fiziki, matematiki i tekhniki, 2015, no. 2(25), 10–15
[15] V.V. Kotlyar, A.A. Kovalev, R.V. Skidanov, V.A. Soifer, “Vraschayuschiesya elegantnye puchki Besselya–Gaussa”, Kompyuternaya optika, 38:2 (2014), 162–168
[16] V.V. Kotlyar, A.A. Kovalev, R.V. Skidanov, V.A. Soifer, “Asymmetric Bessel–Gauss beams”, Journ. Opt. Soc. Am. A, 31:9 (2014), 1977–1983 | DOI
[17] V.V. Kotlyar, A.A. Kovalev, A.P. Porfirev, “Asymmetric Bessel–Gauss beams”, Journ. Appl. Phys., 120 (2016), 023101(5) | DOI | MR
[18] A.P. Porfirev, A.A. Kovalev, V.V. Kotlyar, “Opticheskii zakhvat i peremeschenie mikrochastits s pomoschyu asimmetrichnykh puchkov Besselya–Gaussa”, Kompyuternaya optika, 40:2 (2016), 152–157
[19] S.S. Girgel, “Asimmetrichnye puchki Besselya–Gaussa nepreryvnogo poryadka”, Problemy vzaimodeistviya izlucheniya s veschestvom, Materialy IV Mezhdunarodnoi nauchnoi konferentsii, posvyaschennoi 90-yu so dnya rozhdeniya B. V. Bokutya (Gomel, 9–10 noyabrya 2016 goda), v. 1, Elektronnoe izdanie, GGU imeni F. Skoriny, Gomel, 2016, 24–31
[20] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, v. II, Nauka, M., 1974, 295 pp.
[21] D.N. Christodoulides, N.K. Efremidis, P.D. Trapani, B.A. Malomed, “Bessel X waves in two- and three-dimensional bidispersive optical systems”, Opt. Lett., 29:13 (2004), 1446–1448 | DOI
[22] M.V. Berry, “Optical vortices evolving from helicoidal integer and fractional phase steps”, Journal of Optics, 2003, no. 6, 259–268
[23] R.A. Waldron, “A helical coordinate system and its applications in electromagnetic theory”, Quart. Journ. Mech. and Applied Math., XI:4 (1958), 438–461 | DOI | MR | Zbl
[24] P.L. Overfelt, “Scalar optical beams with helical symmetry”, Phys. Rev. A, 46:6 (1992), 3516–3522 | DOI | MR
[25] C.C. Girgel, “Svoistva vektornykh paraksialnykh svetovykh puchkov. II. Neodnorodnaya polyarizatsiya”, Problemy fiziki, matematiki i tekhniki, 2012, no. 1(10), 11–14
[26] C.C. Girgel, “Svoistva vektornykh paraksialnykh svetovykh puchkov. I. Odnorodnaya polyarizatsiya”, Problemy fiziki, matematiki i tekhniki, 2011, no. 1(6), 20–24