Generalized asymmetric of Bessel–Gaussian beams of the continuous order
Problemy fiziki, matematiki i tehniki, no. 2 (2017), pp. 10-14 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The new solutions of the parabolic equation featuring the generalized asymmetric of Bessel–Gaussian beams of the continuous order are offered. They are characterized by five free continuous parametres and possess a spiral wavefront. Restrictions on these parametres at which explored fractional beams transfer terminating power are discovered. Pictorial modeling of such beams which confirms the main analytical calculations is fulfilled.
Keywords: asymmetric beams, beams of Bessel–Gaussian, a square intergrability.
@article{PFMT_2017_2_a1,
     author = {S. S. Girgel},
     title = {Generalized asymmetric of {Bessel{\textendash}Gaussian} beams of the continuous order},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {10--14},
     year = {2017},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2017_2_a1/}
}
TY  - JOUR
AU  - S. S. Girgel
TI  - Generalized asymmetric of Bessel–Gaussian beams of the continuous order
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2017
SP  - 10
EP  - 14
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/PFMT_2017_2_a1/
LA  - ru
ID  - PFMT_2017_2_a1
ER  - 
%0 Journal Article
%A S. S. Girgel
%T Generalized asymmetric of Bessel–Gaussian beams of the continuous order
%J Problemy fiziki, matematiki i tehniki
%D 2017
%P 10-14
%N 2
%U http://geodesic.mathdoc.fr/item/PFMT_2017_2_a1/
%G ru
%F PFMT_2017_2_a1
S. S. Girgel. Generalized asymmetric of Bessel–Gaussian beams of the continuous order. Problemy fiziki, matematiki i tehniki, no. 2 (2017), pp. 10-14. http://geodesic.mathdoc.fr/item/PFMT_2017_2_a1/

[1] A.P. Kiselev, “Lokalizovannye svetovye volny: paraksialnye i tochnye resheniya volnovogo uravneniya (obzor)”, Optika i spektroskopiya, 102:4 (2007), 661–681

[2] Julio C. Gutierrez-Vega, “Fractionalization of optical beams: I. Planar Analysis”, Optics Letters, 32:11 (2007), 1521–1523 | DOI

[3] Julio C. Gutierrez-Vega, “Fractionalization of optical beams: II. Elegant Laguerre–Gaussian modes”, Optics Express, 15:10 (2007), 6300–6313 | DOI

[4] J.C. Gutierrez-Vega, C. Lopez-Mariscal, “Nondiffracting vortex beams with continuous orbital angular momentum order dependence”, J. Opt. A. Pure Appl. Opt., 2008, 10015009, 8 pp.

[5] Shao Hua Tao, Woei Ming Lee, Xiaocong Yuan, “Experimental study of holographic generation of fractional Bessel beams”, Applied Optics, 43:1 (2004), 122–126 | DOI

[6] J. Durnin, “Exact solutions for nondiffracting beams. I. The scalar theory”, JOSA A, 4:4 (1987), 651–654 | DOI

[7] F. Gori, G. Guattari, C. Padovani, “Bessel–Gauss beams”, Optics Communications, 64:6 (1987), 491–495 | DOI

[8] V. Bagini et al., “Generalized Bessel–Gauss beams”, Journal of Modern Optics, 43:6 (1996), 1155–1166 | MR | Zbl

[9] C. Palma et al., “Imaging of generalized Bessel–Gauss beams”, Journal of Modern Optics, 43:11 (1996), 2269–2277 | DOI

[10] M. Santarsiero, “Propagation of general Bessel–Gauss beams throught ABCD optical systems”, Optics Communications, 132 (1996), 1–7 | DOI

[11] V.V. Kotlyar, A.A. Kovalev, V. A. Soifer, “Bezdifraktsionnye asimmetrichnye elegantnye puchki Besselya s drobnym orbitalnym uglovym momentom”, Kompyuternaya optika, 38:1 (2014), 4–9

[12] S.S. Girgel, “Polyarizatsionnye svoistva bessel-gaussovykh puchkov sveta”, Izvestiya Gomelskogo gosuniversiteta im. F. Skoriny, 2001, no. 6(9), 150–154

[13] S.S. Girgel, “Polyarizatsionnye i energeticheskie svoistva vektornykh bessel-gaussovykh svetovykh puchkov”, Izvestiya Gomelskogo gosuniversiteta im. F. Skoriny, 6(39):1 (2006), 49–52 | Zbl

[14] C.C. Girgel, “Obobschennye puchki Besselya–Gaussa nepreryvnogo poryadka”, Problemy fiziki, matematiki i tekhniki, 2015, no. 2(25), 10–15

[15] V.V. Kotlyar, A.A. Kovalev, R.V. Skidanov, V.A. Soifer, “Vraschayuschiesya elegantnye puchki Besselya–Gaussa”, Kompyuternaya optika, 38:2 (2014), 162–168

[16] V.V. Kotlyar, A.A. Kovalev, R.V. Skidanov, V.A. Soifer, “Asymmetric Bessel–Gauss beams”, Journ. Opt. Soc. Am. A, 31:9 (2014), 1977–1983 | DOI

[17] V.V. Kotlyar, A.A. Kovalev, A.P. Porfirev, “Asymmetric Bessel–Gauss beams”, Journ. Appl. Phys., 120 (2016), 023101(5) | DOI | MR

[18] A.P. Porfirev, A.A. Kovalev, V.V. Kotlyar, “Opticheskii zakhvat i peremeschenie mikrochastits s pomoschyu asimmetrichnykh puchkov Besselya–Gaussa”, Kompyuternaya optika, 40:2 (2016), 152–157

[19] S.S. Girgel, “Asimmetrichnye puchki Besselya–Gaussa nepreryvnogo poryadka”, Problemy vzaimodeistviya izlucheniya s veschestvom, Materialy IV Mezhdunarodnoi nauchnoi konferentsii, posvyaschennoi 90-yu so dnya rozhdeniya B. V. Bokutya (Gomel, 9–10 noyabrya 2016 goda), v. 1, Elektronnoe izdanie, GGU imeni F. Skoriny, Gomel, 2016, 24–31

[20] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, v. II, Nauka, M., 1974, 295 pp.

[21] D.N. Christodoulides, N.K. Efremidis, P.D. Trapani, B.A. Malomed, “Bessel X waves in two- and three-dimensional bidispersive optical systems”, Opt. Lett., 29:13 (2004), 1446–1448 | DOI

[22] M.V. Berry, “Optical vortices evolving from helicoidal integer and fractional phase steps”, Journal of Optics, 2003, no. 6, 259–268

[23] R.A. Waldron, “A helical coordinate system and its applications in electromagnetic theory”, Quart. Journ. Mech. and Applied Math., XI:4 (1958), 438–461 | DOI | MR | Zbl

[24] P.L. Overfelt, “Scalar optical beams with helical symmetry”, Phys. Rev. A, 46:6 (1992), 3516–3522 | DOI | MR

[25] C.C. Girgel, “Svoistva vektornykh paraksialnykh svetovykh puchkov. II. Neodnorodnaya polyarizatsiya”, Problemy fiziki, matematiki i tekhniki, 2012, no. 1(10), 11–14

[26] C.C. Girgel, “Svoistva vektornykh paraksialnykh svetovykh puchkov. I. Odnorodnaya polyarizatsiya”, Problemy fiziki, matematiki i tekhniki, 2011, no. 1(6), 20–24