Investigation of stochastic self-oscillatory systems with one degree of freedom by method of canonical representations
Problemy fiziki, matematiki i tehniki, no. 1 (2017), pp. 37-41.

Voir la notice de l'article provenant de la source Math-Net.Ru

Random fluctuations in the self-oscillatory systems were investigated by canonical representations. The equations to find the most probable values of the amplitude and phase of the steady-state oscillations in systems with additive wideband noises are obtained.
Keywords: self-oscillatory system, method of canonical representations, amplitude of stationary stochastic oscillations.
Mots-clés : stochastic oscillations
@article{PFMT_2017_1_a5,
     author = {S. P. Zhogal and S. I. Zhogal and A. V. Klimenko},
     title = {Investigation of stochastic self-oscillatory systems with one degree of freedom by method of canonical representations},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {37--41},
     publisher = {mathdoc},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2017_1_a5/}
}
TY  - JOUR
AU  - S. P. Zhogal
AU  - S. I. Zhogal
AU  - A. V. Klimenko
TI  - Investigation of stochastic self-oscillatory systems with one degree of freedom by method of canonical representations
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2017
SP  - 37
EP  - 41
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2017_1_a5/
LA  - ru
ID  - PFMT_2017_1_a5
ER  - 
%0 Journal Article
%A S. P. Zhogal
%A S. I. Zhogal
%A A. V. Klimenko
%T Investigation of stochastic self-oscillatory systems with one degree of freedom by method of canonical representations
%J Problemy fiziki, matematiki i tehniki
%D 2017
%P 37-41
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2017_1_a5/
%G ru
%F PFMT_2017_1_a5
S. P. Zhogal; S. I. Zhogal; A. V. Klimenko. Investigation of stochastic self-oscillatory systems with one degree of freedom by method of canonical representations. Problemy fiziki, matematiki i tehniki, no. 1 (2017), pp. 37-41. http://geodesic.mathdoc.fr/item/PFMT_2017_1_a5/

[1] C. W. S. To, Nonlinear random vibration. Analytical techniques and applications, CRC Press, 2012, 292 pp. | MR

[2] P. S. Landa, Regular and Chaotic Oscillations, Springer-Verlag, Berlin–Heidelberg, 2001, 396 pp. | Zbl

[3] V. P. Rubanik, “Vliyanie zapazdyvanii v svyazyakh na intensivnost shumov v slozhnykh avtogeneratorakh”, Radiofizika, 30:10 (1987), 1208–1212

[4] E. S. Venttsel, L. A. Ovcharov, Teoriya sluchainykh protsessov i ee inzhenernye prilozheniya, Nauka, M., 1991, 384 pp. | MR

[5] Yu. A. Mitropolskii, Nguen Van Dao, Nguen Dong An, Nelineinye kolebaniya v sistemakh proizvolnogo poryadka, Navukova dumka, Kiev, 1992, 344 pp.

[6] P. S. Landa, “Vozbuzhdenie khaoticheskikh i stokhasticheskikh kolebanii v razlichnykh sistemakh”, Izv. vuzov «Prikladnaya nelineinaya dinamika», 18:1 (2010), 3–10