A normal factorization of a subnormal subgroup of some finite group in connection with local formations and generalized Frattini subgroups. Formation radicals
Problemy fiziki, matematiki i tehniki, no. 1 (2017), pp. 25-36.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\pi$ be a set of primes, $\mathfrak{F}=\mathfrak{G}_\pi\mathfrak{F}$ — a local formation of finite groups. The conditions of factorability of a subnormal subgroup $H$ of a finite group $G$ by normal subgroups $H_1$ и $H_2$ such that $H_1\cap H_2=O_\pi(H)$, $H_1\in\mathfrak{F}$, $H_2$ belongs to some generalized Frattini subgroup of a group $G$ and $\pi(H_2/O_\pi(H))\bigcap\pi(\mathfrak{F})=\varnothing$ are investigated. Statements, equivalent to the statements on the respective factorizations, functorially generalized, with the consequences for $\pi=\varnothing$ are achieved. The structure of formation radicals of factorgroups of subnormal subgroups of finite groups in connection with generalized Frattini subgroups is investigated.
Keywords: local and radical local formations of finite groups, generalized Frattini subgroups, subgroup $m$-functor, $\mathfrak{F}$-radicals.
@article{PFMT_2017_1_a4,
     author = {L. M. Belokon},
     title = {A normal factorization of a subnormal subgroup of some finite group in connection with local formations and generalized {Frattini} subgroups. {Formation} radicals},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {25--36},
     publisher = {mathdoc},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2017_1_a4/}
}
TY  - JOUR
AU  - L. M. Belokon
TI  - A normal factorization of a subnormal subgroup of some finite group in connection with local formations and generalized Frattini subgroups. Formation radicals
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2017
SP  - 25
EP  - 36
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2017_1_a4/
LA  - ru
ID  - PFMT_2017_1_a4
ER  - 
%0 Journal Article
%A L. M. Belokon
%T A normal factorization of a subnormal subgroup of some finite group in connection with local formations and generalized Frattini subgroups. Formation radicals
%J Problemy fiziki, matematiki i tehniki
%D 2017
%P 25-36
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2017_1_a4/
%G ru
%F PFMT_2017_1_a4
L. M. Belokon. A normal factorization of a subnormal subgroup of some finite group in connection with local formations and generalized Frattini subgroups. Formation radicals. Problemy fiziki, matematiki i tehniki, no. 1 (2017), pp. 25-36. http://geodesic.mathdoc.fr/item/PFMT_2017_1_a4/

[1] L. A. Shemetkov, Formatsii konechnykh grupp, Nauka, M., 1978, 272 pp. | MR

[2] A. Ballester-Bolinches, M. D. Perez-Ramos, “On $\mathfrak{F}$-subnormal subgroups and Frattini-like subgroups of a finite group”, Glazgow Math. J., 36 (1994), 241–247 | DOI | MR | Zbl

[3] E. N. Borodich, M. V. Selkin, “Ob abnormalnykh maksimalnykh podgruppakh konechnykh grupp”, Izvestiya Gomelskogo gosudarstvennogo universiteta im. F. Skoriny, 2006, no. 5(38), 11–13

[4] R. V. Borodich, M. V. Selkin, “K teoreme L. A. Shemetkova”, Vestnik BGU. Seriya 1, 2008, no. 3, 101–107

[5] S. F. Kamornikov, M. V. Selkin, Podgruppovye funktory i klassy konechnykh grupp, Belarus. navuka, Minsk, 2003, 254 pp.

[6] L. M. Belokon, “O peresecheniyakh maksimalnykh $\theta_\pi$-podgrupp konechnykh grupp i $\mathfrak{F}$-abnormalno $\pi'$-polnyi podgruppovoi $m$-funktor”, Problemy fiziki, matematiki i tekhniki, 2015, no. 4(25), 50–58

[7] L. M. Belokon, “K voprosu o peresecheniyakh maksimalnykh $\theta$-podgrupp konechnykh grupp”, Problemy fiziki, matematiki i tekhniki, 2015, no. 3(24), 46–50

[8] M. V. Selkin, V. N. Semenchuk, “Peresechenie maksimalnykh podgrupp v konechnykh gruppakh”, Voprosy algebry, 1985, no. 1, 67–72

[9] L. M. Belokon, “Peresecheniya maksimalnykh podgrupp konechnykh grupp i radikalnye formatsii”, Izvestiya Gomelskogo gosudarstvennogo universiteta im. F. Skoriny, 2013, no. 6(81), 3–10

[10] L. M. Belokon, “O peresecheniyakh maksimalnykh podgrupp konechnykh grupp”, Problemy fiziki, matematiki i tekhniki, 2014, no. 4(21), 46–59