On nonsemiassociativity of polyadic operation $\eta_{s, \sigma, k}$
Problemy fiziki, matematiki i tehniki, no. 1 (2017), pp. 68-72
Cet article a éte moissonné depuis la source Math-Net.Ru
Sufficient conditions of nonsemiassociativity of a polyadic operation $\eta_{s, \sigma, k}$ which is determined on a Cartesian power $A^k$ of $n$-ary $\langle A,\eta\rangle$ semigroup with substitution $\sigma$ of a range $\{1,\dots,k\}$ and $n$-ary operation $\eta$ are found.
Keywords:
polyadic operation, semigroup, semiassociativity, neutral sequence.
Mots-clés : groupoid
Mots-clés : groupoid
@article{PFMT_2017_1_a10,
author = {A. D. Rusakou},
title = {On nonsemiassociativity of polyadic operation $\eta_{s, \sigma, k}$},
journal = {Problemy fiziki, matematiki i tehniki},
pages = {68--72},
year = {2017},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PFMT_2017_1_a10/}
}
A. D. Rusakou. On nonsemiassociativity of polyadic operation $\eta_{s, \sigma, k}$. Problemy fiziki, matematiki i tehniki, no. 1 (2017), pp. 68-72. http://geodesic.mathdoc.fr/item/PFMT_2017_1_a10/
[1] A. M. Galmak, A. D. Rusakov, “O poliadicheskikh operatsiyakh na dekartovykh stepenyakh”, Izvestiya GGU im. F. Skoriny, 2014, no. 3, 35–40
[2] A. M. Galmak, “Mnogomestnye assotsiativnye operatsii na dekartovykh stepenyakh”, Vestsi NAN Belarusi, 2008, no. 3, 28–34
[3] E. L. Post, “Polyadic groups”, Trans. Amer. Math. Soc., 48:2 (1940), 208–350 | DOI | MR
[4] A. M. Galmak, “Ob assotsiativnosti poliadicheskikh gruppoidov”, Vesnik MDU im. A. A. Kulyashova, 2017, no. 1, 4–11
[5] A. M. Galmak, “Obobschennye poliadicheskie operatsii”, Problemy fiziki, matematiki i tekhniki, 2013, no. 2(15), 50–57
[6] A. M. Galmak, Mnogomestnye operatsii na dekartovykh stepenyakh, Izd. tsentr BGU, Minsk, 2009, 265 pp.