Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2017_1_a1, author = {S. S. Girgel}, title = {Diffraction free asymmetric {Bessel} wave fields of the continuous order}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {13--16}, publisher = {mathdoc}, number = {1}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PFMT_2017_1_a1/} }
S. S. Girgel. Diffraction free asymmetric Bessel wave fields of the continuous order. Problemy fiziki, matematiki i tehniki, no. 1 (2017), pp. 13-16. http://geodesic.mathdoc.fr/item/PFMT_2017_1_a1/
[1] A. P. Kiselev, “Lokalizovannye svetovye volny: paraksialnye i tochnye resheniya volnovogo uravneniya (obzor)”, Optika i spektroskopiya, 102:4 (2007), 661–681
[2] Julio C. Gutierrez-Vega, C. Lopez-Mariscal, “Nondiffracting vortex beams with continuous orbital angular momentum order dependence”, J. Opt. A. Pure Appl. Opt., 2008, 10015009, 8 pp.
[3] Shao Hua Tao, Woei Ming Lee, Xiaocong Yuan, “Experimental study of holographic generation of fractional Bessel beams”, Applied Optics, 43:1 (2004), 122–126 | DOI
[4] D. N. Christodoulides, N. K. Efremidis, P. D. Trapani, B. A. Malomed, “Bessel X waves in two- and threedimensional bidispersive optical systems”, Opt. Lett., 29:13 (2004), 1446–1448 | DOI
[5] J. Durnin, “Exact solutions for nondiffracting beams. I. The scalar theory”, JOSA A, 4:4 (1987), 651–654 | DOI
[6] V. V. Kotlyar, A. A. Kovalev, V. A. Soifer, “Asymmetric Bessel modes”, Optics Letters, 39:8 (2014), 2395–2398 | DOI
[7] V. V. Kotlyar, A. A. Kovalev, V. A. Soifer, “Diffraction-free asymmetric elegant Bessel beams with fractional orbital angular momentum”, Computer Optics, 38:1 (2014), 4–10 | DOI
[8] A. A. Kovalev, “Asimmetrichnye mody Besselya pervogo i vtorogo tipa i ikh superpozitsii”, Kompyuternaya optika, 39:1 (2016), 5–10
[9] Lei Gong et al., “Observation of the asymmetric Bessel beams with arbitrary orientation using a digital micromirror device”, Optics Express, 22:22 (2014), 26763–26776 | DOI
[10] Dzh. A. Stretton, Teoriya elektromagnetizma, OGIZ. GITTL, M., 1948, 539 pp.
[11] S. S. Girgel, S. N. Kurilkina, “Vectorial of Bessel light beams”, Proc. SPIE, 4358 (2001), 258–264 | DOI
[12] S. S. Girgel, “Polyarizatsionnye i energeticheskie svoistva besselevykh volnovykh polei”, Izvestiya Gomelskogo gosuniversiteta im. F. Skoriny, 2001, no. 6(9), 142–145
[13] S. S. Girgel, “Besselevy svetovye puchki”, Izvestiya Gomelskogo gosudarstvennogo universiteta im. F. Skoriny, 2005, no. 3(30), 93–98
[14] S. S. Girgel, “Modovye i energeticheskie kharakteristiki vektornykh besselevykh svetovykh polei”, Izvestiya Gomelskogo gosuniversiteta im. F. Skoriny, 6(39):1 (2006), 49–52 | Zbl
[15] S. S. Girgel, “Asimmetrichnye volnovye polya Besselya nepreryvnogo poryadka”, Problemy vzaimodeistviya izlucheniya s veschestvom, Materialy IV Mezhdunarodnoi nauchnoi konferentsii, posvyaschennoi 90-letiyu so dnya rozhdeniya B. V. Bokutya (Gomel, 9–10 noyabrya 2016 g.), v. 1, GGU im. F. Skoriny, Gomel, 18–24 (Elektronnoe izdanie)
[16] E. Yanke, F. Emde, F. Lesh, Spetsialnye funktsii, Nauka, M., 1977, 342 pp.
[17] M. V. Berry, “Optical vortices evolving from helicoidal integer and fractional phase steps”, Journal of Optics, 2003, no. 6, 259–268
[18] R. A. Waldron, “A helical coordinate system and its applications in electromagnetic theory”, Quart. Journ. Mech. and Applied Math., XI:4 (1958), 438–461 | DOI | MR | Zbl
[19] P. L. Overfelt, “Scalar optical beams with helical symmetry”, Phys. Rev. A, 46:6 (1992), 3516–3522 | DOI | MR