Diffraction free asymmetric Bessel wave fields of the continuous order
Problemy fiziki, matematiki i tehniki, no. 1 (2017), pp. 13-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

The new solutions of the equation of Helmholtz describing diffraction free asymmetric wave fields of Bessel of a continuous order are offered. They are characterized by five continuous parameters and possess a spiral wavefront. Restrictions on these parameters at which explored fractional beams transfer terminating power are discovered. Pictorial modeling of such beams is fulfilled.
Keywords: beams, asymmetric beams, Bessel beams.
@article{PFMT_2017_1_a1,
     author = {S. S. Girgel},
     title = {Diffraction free asymmetric {Bessel} wave fields of the continuous order},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {13--16},
     publisher = {mathdoc},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2017_1_a1/}
}
TY  - JOUR
AU  - S. S. Girgel
TI  - Diffraction free asymmetric Bessel wave fields of the continuous order
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2017
SP  - 13
EP  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2017_1_a1/
LA  - ru
ID  - PFMT_2017_1_a1
ER  - 
%0 Journal Article
%A S. S. Girgel
%T Diffraction free asymmetric Bessel wave fields of the continuous order
%J Problemy fiziki, matematiki i tehniki
%D 2017
%P 13-16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2017_1_a1/
%G ru
%F PFMT_2017_1_a1
S. S. Girgel. Diffraction free asymmetric Bessel wave fields of the continuous order. Problemy fiziki, matematiki i tehniki, no. 1 (2017), pp. 13-16. http://geodesic.mathdoc.fr/item/PFMT_2017_1_a1/

[1] A. P. Kiselev, “Lokalizovannye svetovye volny: paraksialnye i tochnye resheniya volnovogo uravneniya (obzor)”, Optika i spektroskopiya, 102:4 (2007), 661–681

[2] Julio C. Gutierrez-Vega, C. Lopez-Mariscal, “Nondiffracting vortex beams with continuous orbital angular momentum order dependence”, J. Opt. A. Pure Appl. Opt., 2008, 10015009, 8 pp.

[3] Shao Hua Tao, Woei Ming Lee, Xiaocong Yuan, “Experimental study of holographic generation of fractional Bessel beams”, Applied Optics, 43:1 (2004), 122–126 | DOI

[4] D. N. Christodoulides, N. K. Efremidis, P. D. Trapani, B. A. Malomed, “Bessel X waves in two- and threedimensional bidispersive optical systems”, Opt. Lett., 29:13 (2004), 1446–1448 | DOI

[5] J. Durnin, “Exact solutions for nondiffracting beams. I. The scalar theory”, JOSA A, 4:4 (1987), 651–654 | DOI

[6] V. V. Kotlyar, A. A. Kovalev, V. A. Soifer, “Asymmetric Bessel modes”, Optics Letters, 39:8 (2014), 2395–2398 | DOI

[7] V. V. Kotlyar, A. A. Kovalev, V. A. Soifer, “Diffraction-free asymmetric elegant Bessel beams with fractional orbital angular momentum”, Computer Optics, 38:1 (2014), 4–10 | DOI

[8] A. A. Kovalev, “Asimmetrichnye mody Besselya pervogo i vtorogo tipa i ikh superpozitsii”, Kompyuternaya optika, 39:1 (2016), 5–10

[9] Lei Gong et al., “Observation of the asymmetric Bessel beams with arbitrary orientation using a digital micromirror device”, Optics Express, 22:22 (2014), 26763–26776 | DOI

[10] Dzh. A. Stretton, Teoriya elektromagnetizma, OGIZ. GITTL, M., 1948, 539 pp.

[11] S. S. Girgel, S. N. Kurilkina, “Vectorial of Bessel light beams”, Proc. SPIE, 4358 (2001), 258–264 | DOI

[12] S. S. Girgel, “Polyarizatsionnye i energeticheskie svoistva besselevykh volnovykh polei”, Izvestiya Gomelskogo gosuniversiteta im. F. Skoriny, 2001, no. 6(9), 142–145

[13] S. S. Girgel, “Besselevy svetovye puchki”, Izvestiya Gomelskogo gosudarstvennogo universiteta im. F. Skoriny, 2005, no. 3(30), 93–98

[14] S. S. Girgel, “Modovye i energeticheskie kharakteristiki vektornykh besselevykh svetovykh polei”, Izvestiya Gomelskogo gosuniversiteta im. F. Skoriny, 6(39):1 (2006), 49–52 | Zbl

[15] S. S. Girgel, “Asimmetrichnye volnovye polya Besselya nepreryvnogo poryadka”, Problemy vzaimodeistviya izlucheniya s veschestvom, Materialy IV Mezhdunarodnoi nauchnoi konferentsii, posvyaschennoi 90-letiyu so dnya rozhdeniya B. V. Bokutya (Gomel, 9–10 noyabrya 2016 g.), v. 1, GGU im. F. Skoriny, Gomel, 18–24 (Elektronnoe izdanie)

[16] E. Yanke, F. Emde, F. Lesh, Spetsialnye funktsii, Nauka, M., 1977, 342 pp.

[17] M. V. Berry, “Optical vortices evolving from helicoidal integer and fractional phase steps”, Journal of Optics, 2003, no. 6, 259–268

[18] R. A. Waldron, “A helical coordinate system and its applications in electromagnetic theory”, Quart. Journ. Mech. and Applied Math., XI:4 (1958), 438–461 | DOI | MR | Zbl

[19] P. L. Overfelt, “Scalar optical beams with helical symmetry”, Phys. Rev. A, 46:6 (1992), 3516–3522 | DOI | MR