Simulation of periodic orbits for three-body systems with newtonian gravitational interaction
Problemy fiziki, matematiki i tehniki, no. 4 (2016), pp. 27-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the framework of the general three-body problem of celestial mechanics dynamic equations for non-relativistic three-body system with Newtonian potential are solved and new periodic orbits are simulated. Principle of least action, Fourier analysis and Mathematica’s possibilities of computer simulation were used.
Keywords: three-body system, action functional, periodic orbit, Fourier series, computer simulation.
Mots-clés : gravitational interaction
@article{PFMT_2016_4_a3,
     author = {G. Yu. Tyumenkov and A. Yu. Pesenko and D. A. Bogdanovich},
     title = {Simulation of periodic orbits for three-body systems with newtonian gravitational interaction},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {27--30},
     publisher = {mathdoc},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2016_4_a3/}
}
TY  - JOUR
AU  - G. Yu. Tyumenkov
AU  - A. Yu. Pesenko
AU  - D. A. Bogdanovich
TI  - Simulation of periodic orbits for three-body systems with newtonian gravitational interaction
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2016
SP  - 27
EP  - 30
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2016_4_a3/
LA  - ru
ID  - PFMT_2016_4_a3
ER  - 
%0 Journal Article
%A G. Yu. Tyumenkov
%A A. Yu. Pesenko
%A D. A. Bogdanovich
%T Simulation of periodic orbits for three-body systems with newtonian gravitational interaction
%J Problemy fiziki, matematiki i tehniki
%D 2016
%P 27-30
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2016_4_a3/
%G ru
%F PFMT_2016_4_a3
G. Yu. Tyumenkov; A. Yu. Pesenko; D. A. Bogdanovich. Simulation of periodic orbits for three-body systems with newtonian gravitational interaction. Problemy fiziki, matematiki i tehniki, no. 4 (2016), pp. 27-30. http://geodesic.mathdoc.fr/item/PFMT_2016_4_a3/

[1] S. Moore, “Braids in classical dynamics”, Phys. Rev. Lett., 70 (1993), 3675–3683 | DOI | MR

[2] R. J. Vanderbei, “New orbits for the $n$-body problem”, Annals of the New York Academy of Sciences, 1017 (2004), 422–430 | DOI

[3] R. Montgomery, “A new solution to the three-body problem”, Notices Amer. Math. Soc., 48:5 (2001), 471–481 | MR | Zbl

[4] A. Roi, Dvizhenie po orbitam, Mir, M., 1981, 545 pp.

[5] V. V. Orlov, A. V. Rubinov, A. I. Martynov, “Periodicheskie orbity v zadache $N$ tel”, Fizika Kosmosa, UGU, Ekaterinburg, 2010, 108–121

[6] A. I. Martynova, V. V. Orlov, “Periodicheskie orbity v obschei zadache trekh tel”, Astronomicheskii vestnik, 47:5 (2013), 395–407 | DOI

[7] V. B. Titov, “Periodicheskie orbity obschei zadachi trekh tel s nulevym kineticheskim momentom”, Nelineinaya dinamika, 8:2 (2012), 377–389 | Zbl