On some properties of a functional calculus of closed operators on Banach space
Problemy fiziki, matematiki i tehniki, no. 4 (2016), pp. 63-67.

Voir la notice de l'article provenant de la source Math-Net.Ru

Some topics in the perturbation theory related to the functional calculus of closed operators in Banach space which belongs to the authors are considered. Moment inequality for the above mentioned functional calculus is also proved.
Keywords: perturbation theory of linear operators, operator Lipschitz functions, operator differentiable functions, moment inequality.
Mots-clés : Gateaux derivative
@article{PFMT_2016_4_a10,
     author = {A. R. Mirotin and A. A. Atvinovskii},
     title = {On some properties of a functional calculus of closed operators on {Banach} space},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {63--67},
     publisher = {mathdoc},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2016_4_a10/}
}
TY  - JOUR
AU  - A. R. Mirotin
AU  - A. A. Atvinovskii
TI  - On some properties of a functional calculus of closed operators on Banach space
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2016
SP  - 63
EP  - 67
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2016_4_a10/
LA  - ru
ID  - PFMT_2016_4_a10
ER  - 
%0 Journal Article
%A A. R. Mirotin
%A A. A. Atvinovskii
%T On some properties of a functional calculus of closed operators on Banach space
%J Problemy fiziki, matematiki i tehniki
%D 2016
%P 63-67
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2016_4_a10/
%G ru
%F PFMT_2016_4_a10
A. R. Mirotin; A. A. Atvinovskii. On some properties of a functional calculus of closed operators on Banach space. Problemy fiziki, matematiki i tehniki, no. 4 (2016), pp. 63-67. http://geodesic.mathdoc.fr/item/PFMT_2016_4_a10/

[1] A. A. Atvinovskii, A. R. Mirotin, “Ob odnom funktsionalnom ischislenii zamknutykh operatorov v banakhovom prostranstve”, Izvestiya vuzov. Matematika, 2013, no. 10, 3–15

[2] A. A. Atvinovskii, A. R. Mirotin, “Obraschenie odnogo klassa operatorov v banakhovom prostranstve i nekotorye ego primeneniya”, Problemy fiziki, matematiki i tekhniki, 2013, no. 3(16), 55–60

[3] A. R. Mirotin, A. A. Atvinovskii, “Obraschenie lineinoi kombinatsii znachenii rezolventy zamknutogo operatora”, Problemy fiziki, matematiki i tekhniki, 2014, no. 3(20), 77–79

[4] A. A. Atvinovskii, A. R. Mirotin, “Ob odnom funktsionalnom ischislenii zamknutykh operatorov v banakhovom prostranstve. II”, Izvestiya vuzov. Matematika, 2015, no. 5, 3–16

[5] A. B. Aleksandrov, V. V. Peller, Operatorno lipshitsevy funktsii, 2016, arXiv: 1602.07994v1

[6] V. V. Peller, The behavior of functions of operators under perturbations, April 10, 2009, arXiv: 0904.1761 | MR

[7] E. Kissin, V. S. Shulman, “Classes of operator-smooth functions. I. Operator Lipschitz functions”, Proc. Edinburgh Math. Soc., 48 (2005), 151–173 | DOI | MR | Zbl

[8] E. Kissin, D. Potapov, F. Sukochev, V. S. Shulman, “Lipschitz functions, Schatten ideals and unbounded derivations”, Functional Analysis and its Applications, 45:2 (2011), 93–96 | DOI | MR | Zbl

[9] M. G. Krein, A. A. Nudelman, Problema momentov Markova i ekstremalnye zadachi, Nauka, M., 1973, 552 pp. | MR

[10] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972, 740 pp.

[11] A. R. Mirotin, “O nekotorykh svoistvakh mnogomernogo funktsionalnogo ischisleniya Bokhnera–Fillipsa”, Sibirskii matem. zh., 52:6 (2011), 1300–1312