Scattering of the field of the electrical dipole on thin unclosed spherical shell аnd bi-isotropic ball. Analytical approach
Problemy fiziki, matematiki i tehniki, no. 3 (2016), pp. 27-34

Voir la notice de l'article provenant de la source Math-Net.Ru

The analytical solution of axially symmetric boundary problem of process scattering of electromagnetic field of electric dipole on bi-isotropic ball is constructed. The dipole is located inside thin unclosed spherical shell. The formula for calculating directive pattern of electric field is received. The graphics of directive pattern for some parameters of the problem are constructed.
Mots-clés : electric dipole
Keywords: Maxwell's equations, vector spherical wave functions, dual series equations, directive pattern of the electric field.
@article{PFMT_2016_3_a3,
     author = {G. Ch. Shushkevich},
     title = {Scattering of the field of the electrical dipole on thin unclosed spherical shell {\cyra}nd bi-isotropic ball. {Analytical} approach},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {27--34},
     publisher = {mathdoc},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2016_3_a3/}
}
TY  - JOUR
AU  - G. Ch. Shushkevich
TI  - Scattering of the field of the electrical dipole on thin unclosed spherical shell аnd bi-isotropic ball. Analytical approach
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2016
SP  - 27
EP  - 34
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2016_3_a3/
LA  - ru
ID  - PFMT_2016_3_a3
ER  - 
%0 Journal Article
%A G. Ch. Shushkevich
%T Scattering of the field of the electrical dipole on thin unclosed spherical shell аnd bi-isotropic ball. Analytical approach
%J Problemy fiziki, matematiki i tehniki
%D 2016
%P 27-34
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2016_3_a3/
%G ru
%F PFMT_2016_3_a3
G. Ch. Shushkevich. Scattering of the field of the electrical dipole on thin unclosed spherical shell аnd bi-isotropic ball. Analytical approach. Problemy fiziki, matematiki i tehniki, no. 3 (2016), pp. 27-34. http://geodesic.mathdoc.fr/item/PFMT_2016_3_a3/