Resolvent of boundary value problem for the difference equation
Problemy fiziki, matematiki i tehniki, no. 3 (2016), pp. 70-75.

Voir la notice de l'article provenant de la source Math-Net.Ru

Boundary value problem for the difference equation $a(k)u(k+1)-\lambda u(k)=f(k)$ with spectral parameter $\lambda$ is considered. The condition of the existence of the right sided resolvents of the above problem in the space $l_2(\mathbb{Z})$ is given. The resolvent is constructed.
Keywords: right-side resolvent, discrete weighted shift operator, Risze projection.
@article{PFMT_2016_3_a11,
     author = {Ali A. Shukur and O. A. Arhipenko},
     title = {Resolvent of boundary value problem for the difference equation},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {70--75},
     publisher = {mathdoc},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2016_3_a11/}
}
TY  - JOUR
AU  - Ali A. Shukur
AU  - O. A. Arhipenko
TI  - Resolvent of boundary value problem for the difference equation
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2016
SP  - 70
EP  - 75
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2016_3_a11/
LA  - ru
ID  - PFMT_2016_3_a11
ER  - 
%0 Journal Article
%A Ali A. Shukur
%A O. A. Arhipenko
%T Resolvent of boundary value problem for the difference equation
%J Problemy fiziki, matematiki i tehniki
%D 2016
%P 70-75
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2016_3_a11/
%G ru
%F PFMT_2016_3_a11
Ali A. Shukur; O. A. Arhipenko. Resolvent of boundary value problem for the difference equation. Problemy fiziki, matematiki i tehniki, no. 3 (2016), pp. 70-75. http://geodesic.mathdoc.fr/item/PFMT_2016_3_a11/

[1] A. B. Antonevich, E. V. Panteleeva, “Right-side Hyperbolic operators”, Ser. A: Appl. Math. Inform. and Mech., 6:1 (2014), 1–9 | DOI

[2] A. B. Antonevich, E. V. Panteleeva, “Pravostoronnie rezolventy diskretnykh operatorov vzveshennogo sdviga s matrichnymi vesami”, Problemy fiziki, matematiki i tekhniki, 16:3 (2013), 45–53 | Zbl

[3] A. B. Antonevich, A. A. Akhmatova, “Spektralnye svoistva diskretnogo operatora vzveshennogo sdviga”, Trudy instituta matematiki, 2:1 (2012), 14–21

[4] A. B. Katok, B. Khasselblat, Vvedenie v sovremennuyu teoriyu dinamicheskikh sistem, Faktorial, M., 1999, 775 pp.

[5] V. A. Sadovnichii, Teoriya operatorov, M., 1999, 368 pp. | MR

[6] F. Riss, B. Sekefalvi-Nad, Lektsii po funktsionalnomu analizu, M., 1954, 500 pp.