The method of application of nonlinear evolution operators for solution of dynamical systems
Problemy fiziki, matematiki i tehniki, no. 3 (2016), pp. 66-69
Cet article a éte moissonné depuis la source Math-Net.Ru
The solution of many technical, physical and mathematical problems is closely related to the study of nonlinear equations and systems. A description of these processes contributed to the establishment and development of systems theory, the development of the mathematical apparatus of the “input-output” using the nonlinear evolution operators. The nonlinear evolution operators of the first and the second multiplicities are dealt in this paper. The method of their application for solution of dynamical systems with generalized characteristics is described. This method is based on the algorithm of constructing asymptotically inverse nonlinear evolution operators.
Keywords:
evolution operator, system, asymptotically reverse evolution operator.
Mots-clés : impulse response, spectral response, multipole
Mots-clés : impulse response, spectral response, multipole
@article{PFMT_2016_3_a10,
author = {D. S. Shpak and I. V. Trifonova},
title = {The method of application of nonlinear evolution operators for solution of dynamical systems},
journal = {Problemy fiziki, matematiki i tehniki},
pages = {66--69},
year = {2016},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PFMT_2016_3_a10/}
}
TY - JOUR AU - D. S. Shpak AU - I. V. Trifonova TI - The method of application of nonlinear evolution operators for solution of dynamical systems JO - Problemy fiziki, matematiki i tehniki PY - 2016 SP - 66 EP - 69 IS - 3 UR - http://geodesic.mathdoc.fr/item/PFMT_2016_3_a10/ LA - ru ID - PFMT_2016_3_a10 ER -
D. S. Shpak; I. V. Trifonova. The method of application of nonlinear evolution operators for solution of dynamical systems. Problemy fiziki, matematiki i tehniki, no. 3 (2016), pp. 66-69. http://geodesic.mathdoc.fr/item/PFMT_2016_3_a10/
[1] Yu. M. Vuvunikyan, Obobschennye funktsii i nelineinye evolyutsionnye operatory, monogr., GrGU, Grodno, 2014, 302 pp.
[2] Yu. M. Vuvunikyan, Evolyutsionnye operatory s obobschennymi impulsnymi i spektralnymi kharakteristikami, monogr., GrGU, Grodno, 2007, 224 pp.
[3] Yu. M. Vuvunikyan, D. S. Shpak, Polinomialnye evolyutsionnye operatory, monogr., GrGU, Grodno, 2015, 277 pp.