The formation of photodeflection response in gyrotropic superlattice irradiated by Bessel light beams
Problemy fiziki, matematiki i tehniki, no. 2 (2016), pp. 18-23.

Voir la notice de l'article provenant de la source Math-Net.Ru

The phenomenon of occurrence of photodeflection signal in gyrotropic superlattice by irradiation of Bessel light beams (BLB) was investigated. It was found that the rate of energy dissipation TE-mode BLB essentially depends on the radial coordinate $\rho$, normalized coordinate $xw = x / w_0$. BLB taper angle $\alpha$, as well as the frequency of the amplitude modulation $\Omega$ BLB.
Keywords: photodeflection responce, gyrotropic superlattice, Bessel light beam, energy dissipation rate, amplitude of the photodeflection signal, Bessel function, heat equation.
@article{PFMT_2016_2_a2,
     author = {G. S. Mityurich and E. V. Chernenok and V. V. Sviridova and A. N. Serdyukov},
     title = {The formation of photodeflection response in gyrotropic superlattice irradiated by {Bessel} light beams},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {18--23},
     publisher = {mathdoc},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2016_2_a2/}
}
TY  - JOUR
AU  - G. S. Mityurich
AU  - E. V. Chernenok
AU  - V. V. Sviridova
AU  - A. N. Serdyukov
TI  - The formation of photodeflection response in gyrotropic superlattice irradiated by Bessel light beams
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2016
SP  - 18
EP  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2016_2_a2/
LA  - ru
ID  - PFMT_2016_2_a2
ER  - 
%0 Journal Article
%A G. S. Mityurich
%A E. V. Chernenok
%A V. V. Sviridova
%A A. N. Serdyukov
%T The formation of photodeflection response in gyrotropic superlattice irradiated by Bessel light beams
%J Problemy fiziki, matematiki i tehniki
%D 2016
%P 18-23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2016_2_a2/
%G ru
%F PFMT_2016_2_a2
G. S. Mityurich; E. V. Chernenok; V. V. Sviridova; A. N. Serdyukov. The formation of photodeflection response in gyrotropic superlattice irradiated by Bessel light beams. Problemy fiziki, matematiki i tehniki, no. 2 (2016), pp. 18-23. http://geodesic.mathdoc.fr/item/PFMT_2016_2_a2/

[1] O. A. Maslova, Yu. I. Yuzyuk, N. Ortega, A. Kumar, R. S. Katigar, “Issledovanie sverkhreshetok BaTiO3/(Ba,Sr)TiO3 metodom spektroskopii kombinatsionnogo rasseyaniya sveta”, FTT, 53:5 (2011), 999–1003

[2] I. V. Pentin i dr., “Poluprovodnikovaya sverkhreshetka-tverdotelnyi teragertsovyi geterodinnyi istochnik dlya elektronno-razogrevnogo NbN-smesitelya”, ZhTF, 82:7 (2012), 75–78

[3] E. A. Menkovich i dr., “Issledovanie fizicheskikh protsessov, voznikayuschikh v usloviyakh nizkikh temperatur i tokov v svetoizluchayuschikh nanogeterostrukturakh na osnove poluprovodnikovykh nitridov”, Trudy MFTI. Nanofizika i nanotekhnologii, 6:1 (2014), 12–19 | MR | Zbl

[4] V. V. Lundin i dr., “Vysokoeffektivnye InGaN/GaN/AlGaN svetodiody s korotkoperiodnoi InGaN/GaN sverkhreshetkoi dlya diapazona 530–560 nm”, Pisma v ZhTF, 36:22 (2010), 89–95

[5] S. Yu. Glazov, N. E. Mescheryakova, “Generatsiya vysshikh garmonik v sverkhreshetke na osnove grafena v prisutstvii postoyannogo elektricheskogo polya”, Nanosistemy: fizika, khimiya, matematika, 3:1 (2012), 64–70

[6] V. S. Sizov i dr., “Ispolzovanie korotkoperiodnykh sverkh-reshetok InGaN/GaN v svetodiodakh sinego diapazona”, FTP, 44:7 (2010), 955–961

[7] I. V. Semchenko, “Girotropnye svoistva sverkhreshetok v dlinnovolnovom priblizhenii”, Kristallografiya, 35:5 (1990), 1047–1050 | MR | Zbl

[8] V. E. Gaishun, I. V. Semchenko, A. N. Serdyukov, “Girotropnye svoistva sverkhreshetok s magnitnoi strukturoi v dlinnovolnovom priblizhenii”, Kristallografiya, 38:3 (1993), 24–27

[9] V. V. Rumyantsev, S. A. Fedorov, M. V. Proskurenko, “Opticheskaya aktivnost neidealnykh 1D-sverkhreshetok s vakansiyami v primesnykh sloyakh”, ZhTF, 84:10 (2014), 79–82 | MR

[10] W. B. Jackson, N. M. Amer, A. C. Boccara, D. Fournier, “Photothermal deflection spectroscopy and detection”, App. Opt., 20:8 (1981), 1333–1344 | DOI

[11] V. P. Zharov, V. S. Letokhov, Lazer Optoacoustic Spectroscopy, Springer-Verlag, N-Y., 1986, 320 pp.

[12] S. E. Bialkowski, Photothermal Spectroscopy Methods for Chemical Analysis, Wiley, N-Y., 1996, 584 pp.

[13] W. A. McGahan, K. D. Cole, “Solution of the Heat Conduction. Equation in Multilayers for Photothermal Deflection Experiments”, J. App. Phys., 72:4 (1992), 1362–1373 | DOI

[14] L. Gallais, M. Commandre, “Photothermal deflection in multilayer coatings: modeling and experiment”, Appl. Opt., 44:25 (2005), 5230–5238 | DOI

[15] K. L. Muratikov, A. L. Glazov, “Opredelenie teplofizicheskikh kharakteristik i parametrov treschin v keramikakh lazernym fotodeflektsionnym metodom”, ZhTF, 71:6 (2001), 110–115 | MR

[16] R. Burbelo, M. Isaiev, A. Kuzmich, “Photothermal analysis of heterogeneous semiconductor structures under a pulse laser irradiation”, Semiconduct. Phys., Quant. Electron. Optoelect., 12:4 (2009), 403–405

[17] G. S. Mityurich, “Fotoakusticheskoe preobrazovanie v nelineinykh girotropnykh kristallakh tipa sillenita”, ZhTF, 59:9 (1989), 118–122

[18] D. K. Kobylińska, R. J. Bukowski, B. Burak, J. Bodzenta, S. Kochowski, “The complex ray theory of photodeflection signal formation: Comparison with the ray theory and the experimental results”, J. Appl. Phys., 100 (2006), 063501, 9 pp. | DOI

[19] D. K. Kobylińska, R. J. Bukowski, J. Bodzenta, S. Kochowski, A. Kaźmiezczak-Balata, “Detector effects in photothermal deflection experiments”, Appl. Opt., 47:10 (2008), 1559–1566 | DOI

[20] M. E. Khosroshahi, A. Mandelis, “Variation of Photoacoustical signal With Gold Nanoparticles Concentration In Phantom Tissue Using Pulsed Nd:YAG Laser”, Int. J. Thermophys., 2014 | DOI

[21] F. I. Fedorov, Teoriya girotropii, Nauka i tekhnika, Minsk, 1976, 380 pp.

[22] J. Durnin, “Exact solution for nondifraction beams”, JOSA, 4:4 (1987), 651–654 | DOI

[23] V. Belyi et al., “Bessel-like beams with $z$-dependent cone angles”, Opt. Express, 18 (2010), 1966–1973 | DOI

[24] L. N. Pyatnitskii, Volnovye besselevy puchki, Fizmatlit, M., 2012, 407 pp.

[25] V. E. Leparskii, A. G. Maschenko, “Elektroskopicheskie konicheskie linzy dlya formirovaniya besselevykh svetovykh puchkov: problemy vzaimodeistviya izlucheniya s veschestvom”, Izvestiya GGU im. F. Skoriny, 9:6 (2001), 8–10

[26] P. I. Ropot, G. S. Mityurich, Ustroistvo termoopticheskogo vozbuzhdeniya akusticheskikh voln, Pat. 5969 Resp. Belarus MPK G 10K 11/00; zayavitel in-t fiziki im. B. N. Stepanova NAN Belarusi, No u20090659; zayavl. 28.08.2009; opubl. 28.02.2010, Belorusskii torgovo-ekonomicheskii universitet PK; Афiцыйны бюл. Нац. цэнтр iнтэлектуал. уласнасцi, 2010, No 1, 215

[27] G. S. Mityurich, A. N. Serdyukov, “Thermooptical excitation of sound by Bessel light beams in crystalline media with internal stress”, Crystallogr. Rep., 56:3 (2011), 360–365 | DOI

[28] G. S. Mityurich, E. V. Chernenok, A. N. Serdyukov, “Photodeflection spectroscopy of magnetoactive suprlattice irradiated by Bessel–Gaussian light beams”, J. Apll. Spectr., 82:2 (2015), 254–259 | DOI

[29] G. S. Mityurich, E. V. Chernenok, V. V. Sviridova, A. N. Serdyukov, “Photoacoustic Transformation of Bessel Light Beams in Magnetoactive Superlattices”, Crystallogr. Rep., 60:2 (2015), 273–279 | DOI

[30] A. A. Blistanov, V. S. Bondarenko, N. V. Perelomova, Akusticheskie kristally. Spravochnik, ed. M. P. Shaskolskaya, Nauka, M., 1982, 632 pp.