On $\sigma$-properties of finite groups~III
Problemy fiziki, matematiki i tehniki, no. 1 (2016), pp. 52-62

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a finite group and $\sigma=\{\sigma_i\mid i\in I\}$ be a partition of the set of all primes $\mathbb{P}$, that is, $\mathbb{P}=\bigcup_{i\in I}\sigma_i$ and $\sigma_i\cap\sigma_j=\varnothing$ for all $i\ne j$. Let $\Pi\subseteq\sigma$. We say that a subgroup $A$ of $G$ is $\Pi$-subnormal in $G$ if there is a subgroup chain $A=A_0\leqslant A_1\leqslant\dots\leqslant A_t=G$ such that either $A_{i-1}$ is normal in $A_i$ or $A_i/(A_{i-1})_{A_i}$ is a $\sigma_j$-group for some $\sigma_j\in\Pi$ for all $i=1,\dots,t$. In this paper, we discuss properties of $\Pi$-subnormal subgroups and some other $\sigma$-properties of finite groups. The work continues the research in the papers [1]–[5].
Keywords: finite group, $\Pi$-subnormal subgroup, the lattice of the $\Pi$-subnormal subgroups, $\sigma$-supersoluble group
Mots-clés : $CLT_\sigma$-group.
@article{PFMT_2016_1_a9,
     author = {A. N. Skiba},
     title = {On $\sigma$-properties of finite {groups~III}},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {52--62},
     publisher = {mathdoc},
     number = {1},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2016_1_a9/}
}
TY  - JOUR
AU  - A. N. Skiba
TI  - On $\sigma$-properties of finite groups~III
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2016
SP  - 52
EP  - 62
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2016_1_a9/
LA  - en
ID  - PFMT_2016_1_a9
ER  - 
%0 Journal Article
%A A. N. Skiba
%T On $\sigma$-properties of finite groups~III
%J Problemy fiziki, matematiki i tehniki
%D 2016
%P 52-62
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2016_1_a9/
%G en
%F PFMT_2016_1_a9
A. N. Skiba. On $\sigma$-properties of finite groups~III. Problemy fiziki, matematiki i tehniki, no. 1 (2016), pp. 52-62. http://geodesic.mathdoc.fr/item/PFMT_2016_1_a9/