Inverse boundary value problem for a second-order hyperbolic equation with integral condition of the first kind
Problemy fiziki, matematiki i tehniki, no. 1 (2016), pp. 42-47.

Voir la notice de l'article provenant de la source Math-Net.Ru

An inverse boundary value problem for a second-order hyperbolic equation with integral condition of the first kind is investigated. A definition of classical solution is introduced for this problem. The Fourier method is used to reduce the problem to a system of integral equations. The method of contraction mappings is applied to prove the existence and uniqueness of a solution of the system of integral equations. Then, the existence and uniqueness of a classical solution of the initial problem is proved.
Keywords: inverse boundary problem, hyperbolic equation, Fourier method, classic solution.
@article{PFMT_2016_1_a7,
     author = {Ya. T. Mehraliyev and Q. N. Isgenderova},
     title = {Inverse boundary value problem for a second-order hyperbolic equation with integral condition of the first kind},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {42--47},
     publisher = {mathdoc},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2016_1_a7/}
}
TY  - JOUR
AU  - Ya. T. Mehraliyev
AU  - Q. N. Isgenderova
TI  - Inverse boundary value problem for a second-order hyperbolic equation with integral condition of the first kind
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2016
SP  - 42
EP  - 47
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2016_1_a7/
LA  - ru
ID  - PFMT_2016_1_a7
ER  - 
%0 Journal Article
%A Ya. T. Mehraliyev
%A Q. N. Isgenderova
%T Inverse boundary value problem for a second-order hyperbolic equation with integral condition of the first kind
%J Problemy fiziki, matematiki i tehniki
%D 2016
%P 42-47
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2016_1_a7/
%G ru
%F PFMT_2016_1_a7
Ya. T. Mehraliyev; Q. N. Isgenderova. Inverse boundary value problem for a second-order hyperbolic equation with integral condition of the first kind. Problemy fiziki, matematiki i tehniki, no. 1 (2016), pp. 42-47. http://geodesic.mathdoc.fr/item/PFMT_2016_1_a7/

[1] I. R. Valitov, A. I. Kozhanov, “Obratnye zadachi dlya giperbolicheskikh uravnenii: sluchai neizvestnykh koeffitsientov, zavisyaschikh ot vremeni”, Vestnik NGU. Ser. Matematika, mekhanika, informatika, 6:1 (2006), 3–18 | MR

[2] I. R. Valitov, A. I. Kozhanov, “O razreshimosti nekotorykh giperbolicheskikh obratnykh zadach s dvumya neizvestnymi koeffitsientami”, Mat. zametki YaGU, 2007, no. 14, 3–16

[3] R. R. Safiullova, “Obratnaya zadacha dlya giperbolicheskogo uravneniya vtorogo poryadka s neizvestnym koeffitsientom, zavisyaschim ot vremeni”, Vestnik YuUrGU. Ser. Matematicheskoe modelirovanie i programmirovanie, 6:4 (2013), 73–86

[4] Ya. T. Megraliev, “Ob odnoi obratnoi kraevoi zadache dlya giperbolicheskogo uravneniya vtorogo poryadka s integralnym usloviem pervogo roda”, Vestnik Bryanskogo gosudarstvennogo universiteta, 2011, no. 4, 22–28

[5] Ya. T. Megraliev, “O razreshimosti odnoi obratnoi kraevoi zadachi dlya giperbolicheskogo uravneniya vtorogo poryadka”, Problemy fiziki, matematiki i tekhniki, 2013, no. 4(17), 63–67

[6] A. A. Samarskii, “O nekotorykh problemakh teorii differentsialnykh uravnenii”, Differentsialnye uravneniya, 16:11 (1980), 1925–1935 | MR

[7] J. R. Cannon, “The solution of the heat equation subject to the specification of energy”, Quart. Appl. Math., 5:21 (1963), 155–160 | MR

[8] N. I. Ionkin, “Reshenie odnoi kraevoi zadachi teorii teploprovodnosti s neklassicheskim kraevym usloviem”, Differentsialnye uravneniya, 13:2 (1977), 294–304 | MR | Zbl

[9] A. M. Nakhushev, “Ob odnom priblizhennom metode resheniya kraevykh zadach dlya differentsialnykh uravnenii i ego priblizheniya k dinamike pochvennoi vlagi i gruntovykh vod”, Differentsialnye uravneniya, 18:1 (1982), 72–81 | MR | Zbl

[10] I. A. Kaliev, M. M. Sabitova, “Zadachi opredeleniya temperatury i plotnosti istochnikov tepla po nachalnoi i konechnoi temperaturam”, Sibirskii zhurnal industrialnoi matematiki, 12:1(37) (2009), 89–97 | Zbl

[11] Ya. T. Megraliev, “Ob odnoi obratnoi kraevoi zadache dlya ellipticheskogo uravneniya vtorogo poryadka s integralnym usloviem pervogo roda”, Trudy IMM UrO RAN, 19, no. 1, 2013, 226–235 | MR