Polarizing and power properties of vector Gaussian-like beams. I. The homogeneous polarisation
Problemy fiziki, matematiki i tehniki, no. 1 (2016), pp. 17-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

The general expressions for the energy flux density of an electromagnetic field $\mathbf{S}$ vector Gaussian-like beams with homogeneous polarization are found. These results for the standard Hermite–Gauss beams are concretized. It is established that energy flows of light beams of Hermite–Gauss are divided into certain independent areas (domains). In each area energy flows are autonomous and into other areas do not pass.
Keywords: paraxial beams, vector beams, Gaussian-like beams, polarizing properties, power properties, polarization.
@article{PFMT_2016_1_a2,
     author = {S. S. Girgel},
     title = {Polarizing and power properties of vector {Gaussian-like} beams. {I.} {The} homogeneous polarisation},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {17--21},
     publisher = {mathdoc},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2016_1_a2/}
}
TY  - JOUR
AU  - S. S. Girgel
TI  - Polarizing and power properties of vector Gaussian-like beams. I. The homogeneous polarisation
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2016
SP  - 17
EP  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2016_1_a2/
LA  - ru
ID  - PFMT_2016_1_a2
ER  - 
%0 Journal Article
%A S. S. Girgel
%T Polarizing and power properties of vector Gaussian-like beams. I. The homogeneous polarisation
%J Problemy fiziki, matematiki i tehniki
%D 2016
%P 17-21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2016_1_a2/
%G ru
%F PFMT_2016_1_a2
S. S. Girgel. Polarizing and power properties of vector Gaussian-like beams. I. The homogeneous polarisation. Problemy fiziki, matematiki i tehniki, no. 1 (2016), pp. 17-21. http://geodesic.mathdoc.fr/item/PFMT_2016_1_a2/

[1] Yu. A. Ananev, Opticheskie rezonatory i lazernye puchki, Nauka, M., 1990

[2] A. M. Goncharenko, Gaussovy puchki sveta, Nauka i tekhnika, Mn., 1977, 144 pp.

[3] A. Yu. Ardashev, V. A. Kashin, G. V. Skrotskii, “Nekotorye svoistva uzkogo monokhromaticheskogo svetovogo puchka”, Izvestiya vuzov. Radiofizika, 11:12 (1968), 1848–1851

[4] L. W. Davis, G. Patsakos, “TM and TE electromagnetic beams in free space”, Optics Letters, 8:1 (1981), 22–23 | DOI

[5] Kh. Khaus, Volny i polya v optoelektronike, Mir, M., 1988, 432 pp.

[6] Koichi Shimoda, “Vectorial analysis of the Gaussian beams of light”, J. Phys. Soc. Japan, 60:1 (1991), 141–144 | DOI | MR

[7] L. A. Vainshtein, Elektromagnitnye volny, Radio i svyaz, M., 1988, 440 pp.

[8] S. R. Seshadri, “Electromagnetic Gaussian beam”, J. Opt. Soc. Am. A, 15:22 (1987), 2712–2719 | MR

[9] M. Born, E. Volf, Osnovy optiki, Nauka, M., 1970, 587 pp.

[10] S. S. Girgel, “Svoistva vektornykh paraksialnykh svetovykh puchkov. I: Odnorodnaya polyarizatsiya”, Problemy fiziki, matematiki i tekhniki, 2011, no. 1(6), 20–24

[11] S. S. Girgel, “Svoistva vektornykh paraksialnykh svetovykh puchkov. II: Neodnorodnaya polyarizatsiya”, Problemy fiziki, matematiki i tekhniki, 2012, no. 1(10), 11–14

[12] S. S. Girgel, “Polyarizatsionnye i energeticheskie svoistva vektornykh paraksialnykh gaussovykh svetovykh puchkov”, Problemy fiziki, matematiki i tekhniki, 2012, no. 3(12), 19–24 | MR

[13] S. S. Girgel, “Polyarizatsionnye svoistva bessel-gaussovykh puchkov sveta”, Izvestiya Gomelskogo gosudarstvennogo universiteta im. F. Skoriny, 2001, no. 6(9), 149–154

[14] S. S. Girgel, “Polyarizatsionnye i energeticheskie svoistva vektornykh bessel-gaussovykh svetovykh puchkov”, Izvestiya Gomelskogo gosudarstvennogo universiteta im. F. Skoriny, 2006, no. 6(39)/2, 15–18

[15] M. A. Bandres, J. C. Gutierrez-Vega, “Vector Helmholtz–Gauss and vector Laplace–Gauss beams”, Optics Letters, 30:16 (2005), 2155–2057 | DOI

[16] F. I. Fedorov, Optika anizotropnykh sred, Izd-vo AN BSSR, Mn., 1976, 380 pp.

[17] A. Y. Bekshaev, M. S. Soskin, “Transverse energy flows in vectorial fields of paraxial beams with singularities”, Opt. Communs., 271 (2007), 332–348 | DOI

[18] A. Bekshaev, K. Bliokh, M. Soskin, “Internal flows and energy circulation in light beams”, Journ. of Optics, 13:5 (2011), 053001, 32 pp. | DOI

[19] M. V. Berry, “Optical currents”, Journ. of Optics. A: Pure Appl. Opt., 11:9 (2009), 094001, 12 pp. | DOI

[20] S. S. Girgel, “Skalyarnye astigmaticheskie 3D svetovye puchki Kummera–Gaussa”, Problemy fiziki, matematiki i tekhniki, 2013, no. 1(13), 11–16