On commutative semigroups of soluble totally $\omega$-saturated formations
Problemy fiziki, matematiki i tehniki, no. 4 (2015), pp. 80-86.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathfrak{M}$ be some totally ($n$-multiply) $\omega$-saturated formation of finite groups ($n\geqslant0$), $\mathfrak{F}$ and $\mathfrak{H}$ be totally ($n$-multiply) $\omega$-saturated subformations of $\mathfrak{M}$. Then $A_\infty^\omega(\mathfrak{M})$ ($A_n^\omega(\mathfrak{M})$) denotes the semigroup of all totally ($n$-multiply) $\omega$-saturated subformations of $\mathfrak{M}$ with multiplication $\mathfrak{F}_{\mathfrak{M}}\cdot\mathfrak{H}=\mathfrak{HF}\cap\mathfrak{M}$, where $\mathfrak{HF}=(G|G^{\mathfrak{H}}\in\mathfrak{F})$. It is proved that a soluble totally ($n$-multiply) $\omega$-saturated formation generates a commutative semigroup of totally ($n$-multiply) $\omega$-saturated subformations if and only if, when it is nilpotent. In particular, the problem 6.26 from [1] is solved for the class of soluble groups.
Keywords: formation of finite groups, totally $\omega$-saturated formation, $n$-multiply $\omega$-saturated formation, semigroup of formations, commutative semigroup of formation.
@article{PFMT_2015_4_a14,
     author = {V. G. Safonov and I. N. Safonova},
     title = {On commutative semigroups of soluble totally $\omega$-saturated formations},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {80--86},
     publisher = {mathdoc},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2015_4_a14/}
}
TY  - JOUR
AU  - V. G. Safonov
AU  - I. N. Safonova
TI  - On commutative semigroups of soluble totally $\omega$-saturated formations
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2015
SP  - 80
EP  - 86
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2015_4_a14/
LA  - ru
ID  - PFMT_2015_4_a14
ER  - 
%0 Journal Article
%A V. G. Safonov
%A I. N. Safonova
%T On commutative semigroups of soluble totally $\omega$-saturated formations
%J Problemy fiziki, matematiki i tehniki
%D 2015
%P 80-86
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2015_4_a14/
%G ru
%F PFMT_2015_4_a14
V. G. Safonov; I. N. Safonova. On commutative semigroups of soluble totally $\omega$-saturated formations. Problemy fiziki, matematiki i tehniki, no. 4 (2015), pp. 80-86. http://geodesic.mathdoc.fr/item/PFMT_2015_4_a14/

[1] L. A. Shemetkov, A. N. Skiba, Formatsii algebraicheskikh sistem, Nauka, M., 1989, 253 pp. | MR

[2] A. N. Skiba, Algebra formatsii, Belarusskaya navuka, Mn., 1997, 240 pp. | MR

[3] A. N. Skiba, L. A. Shemetkov, “Kratno $\omega$-lokalnye formatsii i klassy Fittinga konechnykh grupp”, Matem. trudy, 2:2 (1999), 114–147 | MR | Zbl

[4] A. I. Maltsev, “Ob umnozhenii klassov algebraicheskikh sistem”, Sib. matem. zhurnal, 8:2 (1967), 346–365 | MR

[5] V. G. Safonov, K teorii totalno nasyschennykh formatsiyakh konechnykh grupp, Preprint No 15, Gomelskii gos. un-t im. F. Skoriny, Gomel, 2008, 34 pp. | MR

[6] V. G. Safonov, O totalno $\omega$-nasyschennykh formatsiyakh konechnykh grupp, Preprint No 7, Gomelskii gos. un-t im. F. Skoriny, Gomel, 2004, 18 pp.

[7] V. G. Safonov, I. N. Safonova, “O minimalnykh totalno $\omega$-nasyschennykh nenilpotentnykh formatsiyakh konechnykh grupp”, Vestnik Vitebskogo gos. un-ta, 2014, no. 6(84), 9–15

[8] L. A. Shemetkov, Formatsii konechnykh grupp, Nauka, M., 1978, 272 pp. | MR

[9] A. N. Skiba, L. A. Shemetkov, “Kratno chastichno kompozitsionnye formatsii konechnykh grupp”, Ukrainskii matematicheskii zhurnal, 52:6 (2000), 783–797 | MR | Zbl