A sufficient condition for a formation to be solubly saturated
Problemy fiziki, matematiki i tehniki, no. 4 (2015), pp. 69-73.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a formation $\mathfrak{F}$ and for a set $\pi$ of primes, the solubly saturation of the formation $S_\pi^{\mathfrak{F}}$ of all finite groups whose all $\pi$-subgroups belong to $\mathfrak{F}$ is investigated.
Keywords: finite group, $\pi$-subgroup, solubly saturated formation, $s$-critical group.
Mots-clés : formation
@article{PFMT_2015_4_a12,
     author = {S. F. Kamornikov},
     title = {A sufficient condition for a formation to be solubly saturated},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {69--73},
     publisher = {mathdoc},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2015_4_a12/}
}
TY  - JOUR
AU  - S. F. Kamornikov
TI  - A sufficient condition for a formation to be solubly saturated
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2015
SP  - 69
EP  - 73
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2015_4_a12/
LA  - ru
ID  - PFMT_2015_4_a12
ER  - 
%0 Journal Article
%A S. F. Kamornikov
%T A sufficient condition for a formation to be solubly saturated
%J Problemy fiziki, matematiki i tehniki
%D 2015
%P 69-73
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2015_4_a12/
%G ru
%F PFMT_2015_4_a12
S. F. Kamornikov. A sufficient condition for a formation to be solubly saturated. Problemy fiziki, matematiki i tehniki, no. 4 (2015), pp. 69-73. http://geodesic.mathdoc.fr/item/PFMT_2015_4_a12/

[1] L. S. Kazarin, A. Martinez-Pastor, M. D. Perez-Ramos, “On Sylow normalizers of finite groups”, J. Algebra Appl., 13:3 (2014), 1350116, 20 pp. | DOI | MR | Zbl

[2] D. Blessenohl, “Über Formationen und Halluntergruppen endlicher auflöosbarer Gruppen”, Math. Z., 142:3 (1975), 299–300 | DOI | MR | Zbl

[3] K. Doerk, T. Hawkes, Finite soluble groups, Walter de Gruyter, Berlin–New-York, 1992, 891 pp. | MR

[4] L. A. Shemetkov, Formatsii konechnykh grupp, Nauka, M., 1978, 272 pp. | MR

[5] A. Ballester-Bolinches, S. F. Kamornikov, “A note on solubly saturated formations of finite groups”, J. Algebra Appl., 14:4 (2015), 1550047, 4 pp. | DOI | MR | Zbl

[6] A. N. Skiba, “Ob odnom klasse lokalnykh formatsii”, DAN BSSR, 34:11 (1990), 982–985 | MR | Zbl

[7] S. F. Kamornikov, “O dvukh problemakh L. A. Shemetkova”, Sib. mat. zhurnal, 35:4 (1994), 801–812 | MR | Zbl

[8] S. F. Kamornikov, M. V. Selkin, Podgruppovye funktory i klassy konechnykh grupp, Belaruskaya navuka, Minsk, 2003, 256 pp.

[9] R. A. Bryce, R. Cossey, “Fitting formations of finite soluble groups”, Math. Z., 127:3 (1972), 217–223 | DOI | MR | Zbl

[10] S. F. Kamornikov, “O dvukh zadachakh iz «Kourovskoi tetradi»”, Mat. zametki, 55:6 (1994), 59–63 | MR | Zbl

[11] B. Huppert, “Normalteiler und maximale Untergruppen endlicher Gruppen”, Math. Z., 60 (1954), 409–434 | DOI | MR | Zbl

[12] V. D. Mazurov, E. I. Khukhro, Nereshennye voprosy teorii grupp: Kourovskaya tetrad, Institut matematiki SO RAN, Novosibirsk, 2006, 194 pp.

[13] S. F. Kamornikov, “Ob odnom primere giperradikalnoi formatsii”, Problemy fiziki, matematiki i tekhniki, 2014, no. 3, 61–64 | MR

[14] A. Ballester-Bolinches, L. M. Ezquerro, Classes of finite groups, Springer, Dordrecht, 2006, 385 pp. | MR | Zbl

[15] A. Ballester-Bolinches, S. F. Kamornikov, V. Perez-Calabuig, “On formations of finite groups with the generalized Wielandt property for residuals”, J. Algebra, 412 (2014), 173–178 | DOI | MR | Zbl