Erugin’s problem on the existence of irregular solutions in one case of the linear system with nonzero mean of periodic coefficient
Problemy fiziki, matematiki i tehniki, no. 3 (2015), pp. 51-54.

Voir la notice de l'article provenant de la source Math-Net.Ru

The necessary and sufficient conditions under which linear periodic differential system has strongly irregular periodic solutions were obtained.
Keywords: strongly irregular periodic solution, linear differential system, periodic coefficient.
@article{PFMT_2015_3_a8,
     author = {M. S. Belokursky},
     title = {Erugin{\textquoteright}s problem on the existence of irregular solutions in one case of the linear system with nonzero mean of periodic coefficient},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {51--54},
     publisher = {mathdoc},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2015_3_a8/}
}
TY  - JOUR
AU  - M. S. Belokursky
TI  - Erugin’s problem on the existence of irregular solutions in one case of the linear system with nonzero mean of periodic coefficient
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2015
SP  - 51
EP  - 54
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2015_3_a8/
LA  - ru
ID  - PFMT_2015_3_a8
ER  - 
%0 Journal Article
%A M. S. Belokursky
%T Erugin’s problem on the existence of irregular solutions in one case of the linear system with nonzero mean of periodic coefficient
%J Problemy fiziki, matematiki i tehniki
%D 2015
%P 51-54
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2015_3_a8/
%G ru
%F PFMT_2015_3_a8
M. S. Belokursky. Erugin’s problem on the existence of irregular solutions in one case of the linear system with nonzero mean of periodic coefficient. Problemy fiziki, matematiki i tehniki, no. 3 (2015), pp. 51-54. http://geodesic.mathdoc.fr/item/PFMT_2015_3_a8/

[1] J. L. Massera, “Observaciones sobre les soluciones periodicas de ecuaciones diferenciales”, Bol. de la Facultad de Ingenieria, 4:1 (1950), 37–45 | MR

[2] Ya. Kurtsveil, O. Veivoda, “O periodicheskikh i pochti periodicheskikh resheniyakh sistem obyknovennykh differentsialnykh uravnenii”, Chekhosl. matem. zhurnal, 5:3 (1955), 362–370 | MR | Zbl

[3] N. P. Erugin, Lineinye sistemy obyknovennykh differentsialnykh uravnenii s periodicheskimi i kvaziperiodicheskimi koeffitsientami, AN BSSR, Minsk, 1963, 273 pp. | MR

[4] I. V. Gaishun, “Uravneniya v polnykh proizvodnykh s periodicheskimi koeffitsientami”, Dokl. AN BSSR, 23:8 (1979), 684–686 | MR | Zbl

[5] E. I. Grudo, “O periodicheskikh resheniyakh s nesoizmerimymi periodami periodicheskikh differentsialnykh sistem”, Differents. uravneniya, 22:9 (1986), 1499–1504 | MR | Zbl

[6] A. K. Demenchuk, Asinkhronnye kolebaniya v differentsialnykh sistemakh. Usloviya suschestvovaniya i upravlenie, Lambert Academic Publishing, Saarbrücken, 2012, 186 pp.

[7] M. S. Belokurskii, A. K. Demenchuk, “Reshenie zadachi Erugina o suschestvovanii neregulyarnykh reshenii lineinoi sistemy s treugolnym periodicheskim koeffitsientom”, Doklady NAN Belarusi, 58:4 (2014), 17–22 | Zbl

[8] M. S. Belokurskii, “Reshenie zadachi Erugina o suschestvovanii neregulyarnykh reshenii lineinoi sistemy s nulevym srednim periodicheskogo koeffitsienta”, Vestsi NAN Belarusi. Ser. fiz.-mat. navuk, 2015, no. 1, 35–42 | MR

[9] V. A. Zaitsev, “Globalnaya dostizhimost i globalnaya lyapunovskaya privodimost dvumernykh i trekhmernykh lineinykh upravlyaemykh sistem s postoyannymi koeffitsientami”, Vestnik Udmurtskogo universiteta. Matematika. Izhevsk, 2003, 31–62

[10] A. F. Gabdrakhimov, V. A. Zaitsev, “O lyapunovskoi privodimosti statsionarnykh upravlyaemykh sistem”, Izv. IMI UdGU, 2006, no. 3(37), 21–22

[11] G. A. Leonov, M. M. Shumafov, Stabilization of linear system, Cambridge Scientific Publishers, 2012, 430 pp.

[12] G. A. Leonov, “Stabilizatsionnaya problema Broketta”, Avtomatika i telemekhanika, 2001, no. 5, 190–193