On the problem of intersections of the maximal $\theta$-subgroups of finite groups
Problemy fiziki, matematiki i tehniki, no. 3 (2015), pp. 46-50

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathfrak{F}$ be a nonempty formation, $\pi$ — some set of prime numbers. The theorems reflecting the general regularities on intersections of maximal subgroups of a finite group mutually simple with numbers from $\pi$ indexes including statements on the intersections $\Phi_{\pi,\overline{\widetilde{F}_{\Phi_\pi}(G)}}(G)$ and $\Delta^{\mathfrak{F}}_{\pi,\overline{\widetilde{F}_{\Delta^{\mathfrak{F}}_\pi}(G)}}(G)$ are received.
Keywords: formations of finite groups, subgroup $m$-functor, intersections of maximal $\theta$-subgroups in a finite group.
@article{PFMT_2015_3_a7,
     author = {L. M. Belokon},
     title = {On the problem of intersections of the maximal $\theta$-subgroups of finite groups},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {46--50},
     publisher = {mathdoc},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2015_3_a7/}
}
TY  - JOUR
AU  - L. M. Belokon
TI  - On the problem of intersections of the maximal $\theta$-subgroups of finite groups
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2015
SP  - 46
EP  - 50
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2015_3_a7/
LA  - ru
ID  - PFMT_2015_3_a7
ER  - 
%0 Journal Article
%A L. M. Belokon
%T On the problem of intersections of the maximal $\theta$-subgroups of finite groups
%J Problemy fiziki, matematiki i tehniki
%D 2015
%P 46-50
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2015_3_a7/
%G ru
%F PFMT_2015_3_a7
L. M. Belokon. On the problem of intersections of the maximal $\theta$-subgroups of finite groups. Problemy fiziki, matematiki i tehniki, no. 3 (2015), pp. 46-50. http://geodesic.mathdoc.fr/item/PFMT_2015_3_a7/