Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2015_3_a14, author = {A. P. Starovoitov and E. P. Kechko}, title = {On localization of the zeroes {Hermite--Pad\'e} approximants to the exponential functions}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {84--89}, publisher = {mathdoc}, number = {3}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PFMT_2015_3_a14/} }
TY - JOUR AU - A. P. Starovoitov AU - E. P. Kechko TI - On localization of the zeroes Hermite--Pad\'e approximants to the exponential functions JO - Problemy fiziki, matematiki i tehniki PY - 2015 SP - 84 EP - 89 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PFMT_2015_3_a14/ LA - ru ID - PFMT_2015_3_a14 ER -
A. P. Starovoitov; E. P. Kechko. On localization of the zeroes Hermite--Pad\'e approximants to the exponential functions. Problemy fiziki, matematiki i tehniki, no. 3 (2015), pp. 84-89. http://geodesic.mathdoc.fr/item/PFMT_2015_3_a14/
[1] K. Mahler, “Perfect systems”, Comp. Math., 19 (1968), 95–166 | MR | Zbl
[2] C. Hermite, “Sur la généralisation des fractions continues algébriques”, Ann. Math. Pura. Appl. Ser. 2A, 21 (1883), 289–308 | DOI
[3] C. Hermite, “Sur la généralisation des fractions continues algébriques”, Oeuvres, IV, Gauthier-Villars, Paris, 1917, 357–377
[4] C. Hermite, “Sur la fonction exponentielle”, C.R. Akad. Sci. (Paris), 77 (1873), 18–293
[5] A. I. Aptekarev, H. Stahl, “Asymptotics of Hermite–Padé polynomials”, Progress in Approximation Theory, eds. A. A. Gonchar, E. B. Saff, Springer-Verlag, New York–Berlin, 1992, 127–167 | DOI | MR | Zbl
[6] E. M. Nikishin, V. N. Sorokin, Ratsionalnye approksimatsii i ortogonalnost, Nauka, M., 1988 | MR
[7] A. I. Aptekarev, V. I. Buslaev, A. Martines-Finkelshtein, S. P. Suetin, “Approksimatsii Pade, nepreryvnye drobi i ortogonalnye mnogochleny”, Uspekhi matem. nauk, 66:6(402) (2011), 37–122 | DOI | MR | Zbl
[8] K. Mahler, “Approximation der Exponential-funktion und des Logarithmus. I; II”, J. Reine Angew. Math., 166 (1931), 118–150 | MR
[9] K. Mahler, “Applications of some formulas by Hermite to the approximation of exponentials and logarithms”, Math. Ann., 168 (1967), 200–227 | DOI | MR | Zbl
[10] G. V. Chudnovsky, “Hermite–Padé approximations to exponential functions and elementary estimates of the measure of irrationality of $\pi$”, Lecture Notes in Math., 925, Springer-Verlag, New York–Berlin, 1982, 299–322 | DOI | MR
[11] A. I. Aptekarev (red.), Ratsionalnye priblizheniya postoyannoi Eilera i rekurrentnye sootnosheniya, Sbornik statei, Sovr. probl. matem., 9, MIAN, M., 1988
[12] K. Mahler, “Chebyshev expansion on intervals with branch points with application to the root of Kepler's equation: a Chebyshev–Hermite–Pade method”, J. of Comput. and Appl. Math., 223:2 (2009), 693–702 | DOI | MR
[13] B. Beckermann, V. Kalyagin, Ana C. Matos, F. Wielonsky, How well does the Hermite–Pade approximation smooth the Gibbs phenomenon?, Math. Comput., 80:274 (2011), 931–958 | DOI | MR | Zbl
[14] V. N. Sorokin, “Tsiklicheskie grafy i teorema Aperi”, Uspekhi matem. nauk, 57:3 (2002), 931–958
[15] W. Van Assche, Continued fractions: from analytic number theory to constructive approximation (University of Missouri-Columbia, Columbia, MO, USA, 1998), Contemp. Math., 236, Amer. Math. Soc., Providence, RI, 1999, 325–342 | DOI | MR | Zbl
[16] V. A. Kalyagin, “Approksimatsii Ermita–Pade i spektralnyi analiz nesimmetrichnykh operatorov”, Matem. sb., 185:6 (1994), 79–100
[17] A. I. Aptekarev, V. A. Kalyagin, E. B. Saff, “Higher-order three-term recurrences and asymptotics of multiple orthogonal polynomials”, Constr. Approx., 30:2 (2009), 175–223 | DOI | MR | Zbl
[18] A. I. Aptekarev, P. M. Bleher, A. B. J. Kuijlaars, “Large $n$ limit of Gaussian random matrices with external source, II”, Comm. Math. Phys., 259:2 (2005), 367–389 | DOI | MR | Zbl
[19] A. I. Aptekarev, V. G. Lysov, D. N. Tulyakov, “Globalnyi rezhim raspredeleniya sobstvennykh znachenii sluchainykh matrits s angarmonicheskim potentsialom i vneshnim istochnikom”, TMF, 159:1 (2009), 34–57 | DOI | MR | Zbl
[20] A. I. Aptekarev, V. G. Lysov, D. N. Tulyakov, “Sluchainye matritsy s vneshnim istochnikom i asimptotika sovmestno ortogonalnykh mnogochlenov”, Matem. sb., 202:2 (2011), 3–56 | DOI | MR | Zbl
[21] G. Szego, “Über eienige Eigenschaften der Exponentialreihe”, Sitzunggsberichte Berliner Math. Ges., 23 (1924), 50–64 | Zbl
[22] E. Saff, R. Varga, “On the zeros and poles of Pade approximations to $e^z$, II”, Pade and Rational Approximations: Theory and Applications, Academic Press, New York, 1977 | MR | Zbl
[23] Dzh. Beiker (ml.), P. Greivs-Morris, Approksimatsii Pade, Mir, M., 1986 | MR
[24] H. Stahl, “Asymptotics of Diagonal Hermite–Padé Approximants to $e^z$”, J. Approx. Theory, 90:2 (1997), 283–298 | DOI | MR
[25] H. Stahl, “Asymptotics for quadratic Hermite–Padé polynomals associated with the exponential function”, Electronic Trans. Num. Anal., 14 (2002), 193–220 | MR
[26] A. B. J. Kuijlaars, H. Stahl, W. Van Assche, F. Wielonsky, “Type II Hermite–Padé approximation to the exponential function”, J. of Comput. and Appl. Math., 207 (2007), 227–244 | DOI | MR | Zbl
[27] K. Driver, “Nondiagonal Hermite–Padé approximation to the exponential function”, J. of Comput. and Appl. Math., 65 (1995), 125–134 | DOI | MR | Zbl
[28] A. V. Astafeva, E. P. Kechko, A. P. Starovoitov, “O nulyakh mnogochlenov Ermita”, Izvestiya Gomelskogo gosudarstvennogo universiteta im. F. Skoriny, 2015, no. 3(90), 104–110 | MR | Zbl
[29] A. P. Starovoitov, “Ermitovskaya approksimatsiya dvukh eksponent”, Izvestiya Saratovskogo universiteta. Novaya seriya. Seriya Matematika. Mekhanika. Informatika, 13:1(2) (2013), 88–91 | Zbl
[30] A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integraly i ryady, Nauka, M., 1981 | MR
[31] J. Walsh, “On the location of the roots of certain types of polynomias”, Trans. Amer. Math. Soc., 24 (1922), 163–180 | DOI | MR
[32] M. Morden, Geometry of Polynomials, American Mathematical Society, 1966 | MR