Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2015_3_a1, author = {Zh. V. Kolyadko and V. V. Shepelevich and V. V. Davydovskaya}, title = {Propagation of singular beams in a cubic optically active photorefractive crystal}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {10--16}, publisher = {mathdoc}, number = {3}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PFMT_2015_3_a1/} }
TY - JOUR AU - Zh. V. Kolyadko AU - V. V. Shepelevich AU - V. V. Davydovskaya TI - Propagation of singular beams in a cubic optically active photorefractive crystal JO - Problemy fiziki, matematiki i tehniki PY - 2015 SP - 10 EP - 16 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PFMT_2015_3_a1/ LA - ru ID - PFMT_2015_3_a1 ER -
%0 Journal Article %A Zh. V. Kolyadko %A V. V. Shepelevich %A V. V. Davydovskaya %T Propagation of singular beams in a cubic optically active photorefractive crystal %J Problemy fiziki, matematiki i tehniki %D 2015 %P 10-16 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/PFMT_2015_3_a1/ %G ru %F PFMT_2015_3_a1
Zh. V. Kolyadko; V. V. Shepelevich; V. V. Davydovskaya. Propagation of singular beams in a cubic optically active photorefractive crystal. Problemy fiziki, matematiki i tehniki, no. 3 (2015), pp. 10-16. http://geodesic.mathdoc.fr/item/PFMT_2015_3_a1/
[1] J. F. Nye, M. V. Berry, “Dislocations in wave trains”, Proc. R. Soc. Lond. A, 336 (1974), 165–190 | DOI | MR | Zbl
[2] D. M. Palacios et al., “Spatial correlation singularity of a vortex field”, Physical Review Letters, 92:14 (2004), 143905, 4 pp. | DOI
[3] M. S. Soskin, M. V. Vasnetsov, “Singular optics”, Prog. Opt., 42 (2001), 219–276 | DOI
[4] L. A. Kazak, A. L. Tolstik, “Formirovanie, superpozitsiya i ustoichivost vikhrevykh opticheskikh puchkov razlichnogo poryadka”, Vestnik BGU. Ser. 1, 2010, no. 2, 3–7
[5] Y. J. He, H. Z. Wang, B. A. Malomed, “Fusion of necklace-ring patterns into vortex and fundamental solitons in dissipative media”, Opt. Express, 15:26 (2007), 17502–17508 | DOI
[6] V. V. Kotlyar, A. A. Kovalev, “Trekh- i chetyrekhurovnevye spiralnye fazovye plastinki”, Kompyuternaya optika, 32:1 (2008), 9–14
[7] A. A. Kovalev, V. V. Kotlyar, “Difraktsiya Fraungofera na mnogourovnevoi (kvantovannoi) spiralnoi fazovoi plastinke”, Kompyuternaya optika, 31:3 (2007), 9–13
[8] Y. Izdebskaya, V. Shvedov, A. Volyar, “Generation of higher-order optical vortices by a dielectric wedge”, Opt. Lett., 30:18 (2005), 2472–2474 | DOI
[9] J. Strohaber, T. D. Scarborough, G. J. Uiterwaal, “Ultrashort intense-field optical vortices produced with laser-etched mirrors”, Appl. Opt., 46:36 (2007), 8583–8590 | DOI
[10] A. V. Carpentier et al., “Making optical vortices with computer-generated holograms”, Am. J. Phys., 76:10 (2008), 916–921 | DOI
[11] K. T. Gahagan, G. A. Swartzlander (Jr.), “Optical vortex trapping of particles”, Opt. Lett., 21:11 (1996), 827–829 | DOI
[12] N. B. Simpson et al., “Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner”, Opt. Lett., 22 (1997), 52–54 | DOI
[13] G. Foo, D. M. Palacios, G. A. Swartzlander (Jr.), “Optical vortex coronagraph”, Opt. Lett., 30:24 (2005), 3308–3310 | DOI
[14] A. N. Khoroshun, D. N. Artsishevskii, “Opredelenie malykh uglov povorota svetodelitelya v opticheskom vikhrevom interferometre sdviga”, Pisma v ZhTF, 36:8 (2010), 75–81
[15] N. B. Phillips et al., “Optical vortex filtering for the detection of electromagnetically induced transparency”, J. Opt. Soc. Am. B, 28:9 (2011), 2129–2133 | DOI
[16] A. H. Carlsson et al., “Linear and nonlinear waveguides induced by optical vortex solitons”, Opt. Lett., 25:9 (2000), 660–662 | DOI
[17] C. T. Law, X. Zhang, G. A. Swartzlander (Jr.), “Waveguiding properties of optical vortex solitons”, Opt. Lett., 25:1 (2000), 55–57 | DOI
[18] G. A. Swartzlander (Jr.), C. T. Law, “Optical vortex solitons observed in Kerr nonlinear media”, Phys. Rev. Lett., 69 (1992), 2503–2506 | DOI
[19] A. V. Mamaev, M. Saffman, A. A. Zozulya, “Propagation of a mutually incoherent optical vortex pair in anisotropic nonlinear media”, J. Opt. B: Quantum Semiclass. Opt., 6 (2004), S318–S322 | DOI
[20] R. Passier, F. Devaux, M. Chauvet, “Impact of tensorial nature of the electro-optic effect on vortex beam propagation in photorefractive media”, Opt. Express, 16:10 (2008), 7134–7141 | DOI
[21] T. A. Kornienko, Yu. I. Miksyuk, K. A. Saechnikov, A. L. Tolstik, “Elektroopticheskie effekty i samovozdeistvie gaussovykh i singulyarnykh svetovykh puchkov v kristallakh Bi$_{12}$TiO$_{20}$ i Bi$_{12}$SiO$_{20}$”, IV Kongress fizikov Belarusi, Sbornik nauchnykh trudov (24–26 aprelya 2013 g.), eds. S. Ya. Kilin i dr., Kovcheg, Minsk, 2013, 139–140
[22] V. V. Davydovskaya, Zh. V. Kolyadko, V. V. Shepelevich, “Vliyanie opticheskoi aktivnosti na optimalnye usloviya fokusirovki odnomernykh i dvumernykh svetovykh puchkov razlichnykh profilei v kubicheskom fotorefraktivnom kristalle”, Optika i spektroskopiya, 113:3 (2012), 598–606
[23] N. V. Kukhtarev et al., “Holographic storage in electrooptic crystals. I: Steady state”, Ferroelectrics, 22 (1979), 949–961 | DOI
[24] A. F. Konstantinova i dr., Opticheskie svoistva kristallov, Nauka i tekhnika, Minsk, 1995, 302 pp.
[25] M. Ya. Vygodskii, Spravochnik po vysshei matematike, AST. Astrel, M., 2006, 991 pp.
[26] T. V. Gabruseva i dr., “Formirovanie nizkointensivnykh prostranstvennykh solitonov v fotorefraktivnom kristalle Bi$_{12}$TiO$_{20}$”, Izvestiya RAN. Seriya fizicheskaya, 70:12 (2006), 1775–1747