Propagation of singular beams in a cubic optically active photorefractive crystal
Problemy fiziki, matematiki i tehniki, no. 3 (2015), pp. 10-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

The features of the propagation of singular beams with various signs of the topological charge in a cubic optically active photorefractive crystal of $(\bar{1}\bar{1}0)$ cut, to which an external electric field is applied, are investigated. The dependence of the angle of rotation of the singular beam on value of external electric field applied to the crystal and sign of unit topological charge of the beam is analyzed. It is shown how the optical activity affects the distribution of singular beam in the crystal.
Keywords: singular beam, photorefractive crystal, optical activity.
@article{PFMT_2015_3_a1,
     author = {Zh. V. Kolyadko and V. V. Shepelevich and V. V. Davydovskaya},
     title = {Propagation of singular beams in a cubic optically active photorefractive crystal},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {10--16},
     publisher = {mathdoc},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2015_3_a1/}
}
TY  - JOUR
AU  - Zh. V. Kolyadko
AU  - V. V. Shepelevich
AU  - V. V. Davydovskaya
TI  - Propagation of singular beams in a cubic optically active photorefractive crystal
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2015
SP  - 10
EP  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2015_3_a1/
LA  - ru
ID  - PFMT_2015_3_a1
ER  - 
%0 Journal Article
%A Zh. V. Kolyadko
%A V. V. Shepelevich
%A V. V. Davydovskaya
%T Propagation of singular beams in a cubic optically active photorefractive crystal
%J Problemy fiziki, matematiki i tehniki
%D 2015
%P 10-16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2015_3_a1/
%G ru
%F PFMT_2015_3_a1
Zh. V. Kolyadko; V. V. Shepelevich; V. V. Davydovskaya. Propagation of singular beams in a cubic optically active photorefractive crystal. Problemy fiziki, matematiki i tehniki, no. 3 (2015), pp. 10-16. http://geodesic.mathdoc.fr/item/PFMT_2015_3_a1/

[1] J. F. Nye, M. V. Berry, “Dislocations in wave trains”, Proc. R. Soc. Lond. A, 336 (1974), 165–190 | DOI | MR | Zbl

[2] D. M. Palacios et al., “Spatial correlation singularity of a vortex field”, Physical Review Letters, 92:14 (2004), 143905, 4 pp. | DOI

[3] M. S. Soskin, M. V. Vasnetsov, “Singular optics”, Prog. Opt., 42 (2001), 219–276 | DOI

[4] L. A. Kazak, A. L. Tolstik, “Formirovanie, superpozitsiya i ustoichivost vikhrevykh opticheskikh puchkov razlichnogo poryadka”, Vestnik BGU. Ser. 1, 2010, no. 2, 3–7

[5] Y. J. He, H. Z. Wang, B. A. Malomed, “Fusion of necklace-ring patterns into vortex and fundamental solitons in dissipative media”, Opt. Express, 15:26 (2007), 17502–17508 | DOI

[6] V. V. Kotlyar, A. A. Kovalev, “Trekh- i chetyrekhurovnevye spiralnye fazovye plastinki”, Kompyuternaya optika, 32:1 (2008), 9–14

[7] A. A. Kovalev, V. V. Kotlyar, “Difraktsiya Fraungofera na mnogourovnevoi (kvantovannoi) spiralnoi fazovoi plastinke”, Kompyuternaya optika, 31:3 (2007), 9–13

[8] Y. Izdebskaya, V. Shvedov, A. Volyar, “Generation of higher-order optical vortices by a dielectric wedge”, Opt. Lett., 30:18 (2005), 2472–2474 | DOI

[9] J. Strohaber, T. D. Scarborough, G. J. Uiterwaal, “Ultrashort intense-field optical vortices produced with laser-etched mirrors”, Appl. Opt., 46:36 (2007), 8583–8590 | DOI

[10] A. V. Carpentier et al., “Making optical vortices with computer-generated holograms”, Am. J. Phys., 76:10 (2008), 916–921 | DOI

[11] K. T. Gahagan, G. A. Swartzlander (Jr.), “Optical vortex trapping of particles”, Opt. Lett., 21:11 (1996), 827–829 | DOI

[12] N. B. Simpson et al., “Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner”, Opt. Lett., 22 (1997), 52–54 | DOI

[13] G. Foo, D. M. Palacios, G. A. Swartzlander (Jr.), “Optical vortex coronagraph”, Opt. Lett., 30:24 (2005), 3308–3310 | DOI

[14] A. N. Khoroshun, D. N. Artsishevskii, “Opredelenie malykh uglov povorota svetodelitelya v opticheskom vikhrevom interferometre sdviga”, Pisma v ZhTF, 36:8 (2010), 75–81

[15] N. B. Phillips et al., “Optical vortex filtering for the detection of electromagnetically induced transparency”, J. Opt. Soc. Am. B, 28:9 (2011), 2129–2133 | DOI

[16] A. H. Carlsson et al., “Linear and nonlinear waveguides induced by optical vortex solitons”, Opt. Lett., 25:9 (2000), 660–662 | DOI

[17] C. T. Law, X. Zhang, G. A. Swartzlander (Jr.), “Waveguiding properties of optical vortex solitons”, Opt. Lett., 25:1 (2000), 55–57 | DOI

[18] G. A. Swartzlander (Jr.), C. T. Law, “Optical vortex solitons observed in Kerr nonlinear media”, Phys. Rev. Lett., 69 (1992), 2503–2506 | DOI

[19] A. V. Mamaev, M. Saffman, A. A. Zozulya, “Propagation of a mutually incoherent optical vortex pair in anisotropic nonlinear media”, J. Opt. B: Quantum Semiclass. Opt., 6 (2004), S318–S322 | DOI

[20] R. Passier, F. Devaux, M. Chauvet, “Impact of tensorial nature of the electro-optic effect on vortex beam propagation in photorefractive media”, Opt. Express, 16:10 (2008), 7134–7141 | DOI

[21] T. A. Kornienko, Yu. I. Miksyuk, K. A. Saechnikov, A. L. Tolstik, “Elektroopticheskie effekty i samovozdeistvie gaussovykh i singulyarnykh svetovykh puchkov v kristallakh Bi$_{12}$TiO$_{20}$ i Bi$_{12}$SiO$_{20}$”, IV Kongress fizikov Belarusi, Sbornik nauchnykh trudov (24–26 aprelya 2013 g.), eds. S. Ya. Kilin i dr., Kovcheg, Minsk, 2013, 139–140

[22] V. V. Davydovskaya, Zh. V. Kolyadko, V. V. Shepelevich, “Vliyanie opticheskoi aktivnosti na optimalnye usloviya fokusirovki odnomernykh i dvumernykh svetovykh puchkov razlichnykh profilei v kubicheskom fotorefraktivnom kristalle”, Optika i spektroskopiya, 113:3 (2012), 598–606

[23] N. V. Kukhtarev et al., “Holographic storage in electrooptic crystals. I: Steady state”, Ferroelectrics, 22 (1979), 949–961 | DOI

[24] A. F. Konstantinova i dr., Opticheskie svoistva kristallov, Nauka i tekhnika, Minsk, 1995, 302 pp.

[25] M. Ya. Vygodskii, Spravochnik po vysshei matematike, AST. Astrel, M., 2006, 991 pp.

[26] T. V. Gabruseva i dr., “Formirovanie nizkointensivnykh prostranstvennykh solitonov v fotorefraktivnom kristalle Bi$_{12}$TiO$_{20}$”, Izvestiya RAN. Seriya fizicheskaya, 70:12 (2006), 1775–1747