Beams of Kummer without the Gaussian apodization with transferable terminating power
Problemy fiziki, matematiki i tehniki, no. 3 (2015), pp. 7-9.

Voir la notice de l'article provenant de la source Math-Net.Ru

The new solutions of the parabolic equation featuring paraxial light beams are offered. Such beams are featured by Kummer functions of complex argument with two free parameters without a Gaussian. Restrictions on these parameters, at which beams of Kummer transfer terminating power and are physically realized, are discovered.
Keywords: paraxial beams, beams of Kummer, square integrability.
@article{PFMT_2015_3_a0,
     author = {S. S. Girgel},
     title = {Beams of {Kummer} without the {Gaussian} apodization with transferable terminating power},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {7--9},
     publisher = {mathdoc},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2015_3_a0/}
}
TY  - JOUR
AU  - S. S. Girgel
TI  - Beams of Kummer without the Gaussian apodization with transferable terminating power
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2015
SP  - 7
EP  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2015_3_a0/
LA  - ru
ID  - PFMT_2015_3_a0
ER  - 
%0 Journal Article
%A S. S. Girgel
%T Beams of Kummer without the Gaussian apodization with transferable terminating power
%J Problemy fiziki, matematiki i tehniki
%D 2015
%P 7-9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2015_3_a0/
%G ru
%F PFMT_2015_3_a0
S. S. Girgel. Beams of Kummer without the Gaussian apodization with transferable terminating power. Problemy fiziki, matematiki i tehniki, no. 3 (2015), pp. 7-9. http://geodesic.mathdoc.fr/item/PFMT_2015_3_a0/

[1] Yu. A. Ananev, Opticheskie rezonatory i lazernye puchki, Nauka, M., 1990, 264 pp.

[2] A. M. Goncharenko, Gaussovy puchki sveta, Nauka i tekhnika, Mn., 1977, 142 pp.

[3] S. S. Girgel, “Skalyarnye paraksialnye dvumernye gaussovopodobnye puchki”, Problemy fiziki, matematiki i tekhniki, 2010, no. 1(2), 7–11

[4] S. S. Girgel, “Fizicheskie svoistva skalyarnykh 2D puchkov Kummera–Gaussa”, Problemy fiziki, matematiki i tekhniki, 2011, no. 4(9), 19–23

[5] M. A. Bandres, J. C. Gutierres-Vega, “Cartesian beams”, Optics Letters, 32:23 (2007), 3459–3461 | DOI

[6] S. S. Girgel, “Puchki Kummera s perenosimoi konechnoi moschnostyu”, Materialy nauchnogo seminara po optike i teoreticheskoi fizike, posvyaschennogo 70-letiyu so dnya rozhdeniya A. N. Serdyukova, GGU im. F. Skoriny, Gomel, 2014, 8–12

[7] Z. Flyugge, Zadachi po kvantovoi mekhanike, v. 2, Mir, M., 1974, 418 pp.

[8] S. S. Girgel, “Skalyarnye astigmaticheskie 3D svetovye puchki Kummera–Gaussa”, Problemy fiziki, matematiki i tekhniki, 2013, no. 1(14), 19–23 | MR