Criteria of $p$-supersolubility of finite groups
Problemy fiziki, matematiki i tehniki, no. 2 (2015), pp. 56-61.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a finite group and $H$ a subgroup of $G$. We say that $H$ is $\tau$-quasinormal in $G$ if $H$ permutes with all Sylow subgroups $Q$ of $G$ such that $(|Q|, |H|)=1$ and $(|H|, |Q^G|)\ne1$. The main result here is the following: Let $G=AT$, where $A$ is a Hall $\pi$-subgroup of $G$ and $T$ is $p$-nilpotent for some prime $p\notin\pi$, let $P$ denote a Sylow $p$-subgroup of $T$ and assume that $A$ is $\tau$-quasinormal in $G$. Suppose that there is a number $p^k$ such that $1$ and $A$ permutes with every subgroup of $P$ of order $p^k$ and with every cyclic subgroup of $P$ of order $4$ (if $p^k=2$ and $P$ is non-abelian). Then $G$ is $p$-supersoluble.
Keywords: $\tau$-quasinormal subgroup, Sylow subgroup, Hall subgroup, $p$-supersoluble group.
Mots-clés : $p$-soluble group
@article{PFMT_2015_2_a8,
     author = {V. O. Lukyanenko and T. V. Tikhonenko},
     title = {Criteria of $p$-supersolubility of finite groups},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {56--61},
     publisher = {mathdoc},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2015_2_a8/}
}
TY  - JOUR
AU  - V. O. Lukyanenko
AU  - T. V. Tikhonenko
TI  - Criteria of $p$-supersolubility of finite groups
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2015
SP  - 56
EP  - 61
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2015_2_a8/
LA  - ru
ID  - PFMT_2015_2_a8
ER  - 
%0 Journal Article
%A V. O. Lukyanenko
%A T. V. Tikhonenko
%T Criteria of $p$-supersolubility of finite groups
%J Problemy fiziki, matematiki i tehniki
%D 2015
%P 56-61
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2015_2_a8/
%G ru
%F PFMT_2015_2_a8
V. O. Lukyanenko; T. V. Tikhonenko. Criteria of $p$-supersolubility of finite groups. Problemy fiziki, matematiki i tehniki, no. 2 (2015), pp. 56-61. http://geodesic.mathdoc.fr/item/PFMT_2015_2_a8/

[1] O. H. Kegel, “Sylow-Gruppen and Subnormalteiler endlicher Gruppen”, Math. Z., 78 (1962), 205–221 | MR | Zbl

[2] V. O. Lukyanenko, A. N. Skiba, “On weakly $\tau$-quasinormal subgroups of finite groups”, Acta Math. Hungar., 125:3 (2009), 237–248 | MR | Zbl

[3] P. Hall, “A characteristic property of soluble groups”, J. London Math. Soc., 12:2 (1937), 188–200 | MR

[4] B. Huppert, “Zur Sylow struktur auflosbarer Gruppen”, Arch. Math., 12 (1961), 161–169 | MR | Zbl

[5] V. I. Sergienko, “A criterion for the $p$-solubility of finite groups”, Math. Notes, 9 (1971), 216–220 | MR | Zbl

[6] M. T. Borovikov, “Gruppy s perestanovochnymi podgruppami vzaimno prostogo poryadka”, Voprosy algebry, 1990, no. 5, 80–82

[7] W. Guo, A. N. Skiba, “Criteria of existence of Hall subgroups in non-soluble finite groups”, Acta Math. Sinica, English Series, 26:2 (2010), 295–304 | MR | Zbl

[8] W. Guo, K. P. Shum, A. N. Skiba, “Finite groups with some given systems of $X_m$-semipermutable subgroups”, Math. Nahcr., 283:11 (2010), 1603–1612 | MR | Zbl

[9] V. O. Lukyanenko, A. N. Skiba, “A criterion for the $p$-supersolubility of finite groups”, J. Algebra Appl., 9:1 (2010), 17–26 | MR | Zbl

[10] I. Syaolan, A. N. Skiba, “O nekotorykh obobscheniyakh perestanovochnosti i $S$-perestanovochnosti”, Problemy fiziki, matematiki i tekhniki, 2013, no. 4(17), 47–54 | MR

[11] K. Doerk, T. Hawkes, Finite Soluble Grooups, Walter de Gruyter, Berlin–New York, 1992 | MR

[12] A. Ballester-Bolinches, L. M. Ezquerro, Classes of finite groups, Springer, Dordrecht, 2006 | MR | Zbl

[13] L. A. Shemetkov, Formatsii konechnykh grupp, Nauka, M., 1978 | MR

[14] O. H. Kegel, “Produkte nilpotenter Gruppen”, Arch. Math., 12 (1961), 90–93 | MR | Zbl

[15] B. Huppert, Endliche Gruppen, v. I, Springer-Verlag, Berlin–Heidelberg–New York, 1967 | MR | Zbl

[16] D. Gorenstein, Finite Groups, Harper Row Publishers, New York–Evanston–London, 1968 | MR | Zbl

[17] A. N. Skiba, “On weakly $S$-permutable subgroups of finite groups”, J. Algebra, 315 (2007), 192–209 | MR | Zbl

[18] W. Guo, K. P. Shum, A. N. Skiba, “$G$-covering subgroup systems for the classes of $p$-supersoluble and $p$-nilpotent groups”, Siberian Math. J., 45:3 (2004), 75–92 | MR