Criteria of $p$-supersolubility of finite groups
Problemy fiziki, matematiki i tehniki, no. 2 (2015), pp. 56-61

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a finite group and $H$ a subgroup of $G$. We say that $H$ is $\tau$-quasinormal in $G$ if $H$ permutes with all Sylow subgroups $Q$ of $G$ such that $(|Q|, |H|)=1$ and $(|H|, |Q^G|)\ne1$. The main result here is the following: Let $G=AT$, where $A$ is a Hall $\pi$-subgroup of $G$ and $T$ is $p$-nilpotent for some prime $p\notin\pi$, let $P$ denote a Sylow $p$-subgroup of $T$ and assume that $A$ is $\tau$-quasinormal in $G$. Suppose that there is a number $p^k$ such that $1$ and $A$ permutes with every subgroup of $P$ of order $p^k$ and with every cyclic subgroup of $P$ of order $4$ (if $p^k=2$ and $P$ is non-abelian). Then $G$ is $p$-supersoluble.
Keywords: $\tau$-quasinormal subgroup, Sylow subgroup, Hall subgroup, $p$-supersoluble group.
Mots-clés : $p$-soluble group
@article{PFMT_2015_2_a8,
     author = {V. O. Lukyanenko and T. V. Tikhonenko},
     title = {Criteria of $p$-supersolubility of finite groups},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {56--61},
     publisher = {mathdoc},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2015_2_a8/}
}
TY  - JOUR
AU  - V. O. Lukyanenko
AU  - T. V. Tikhonenko
TI  - Criteria of $p$-supersolubility of finite groups
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2015
SP  - 56
EP  - 61
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2015_2_a8/
LA  - ru
ID  - PFMT_2015_2_a8
ER  - 
%0 Journal Article
%A V. O. Lukyanenko
%A T. V. Tikhonenko
%T Criteria of $p$-supersolubility of finite groups
%J Problemy fiziki, matematiki i tehniki
%D 2015
%P 56-61
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2015_2_a8/
%G ru
%F PFMT_2015_2_a8
V. O. Lukyanenko; T. V. Tikhonenko. Criteria of $p$-supersolubility of finite groups. Problemy fiziki, matematiki i tehniki, no. 2 (2015), pp. 56-61. http://geodesic.mathdoc.fr/item/PFMT_2015_2_a8/