On ordered Abel--Grassmann’s groupoids
Problemy fiziki, matematiki i tehniki, no. 2 (2015), pp. 40-47.

Voir la notice de l'article provenant de la source Math-Net.Ru

The concept of $(m,n)$-ideals in ordered $\mathcal{AG}$-groupoids is introduced and the $(0,2)$-ideals and $(1,2)$-ideals of an ordered $\mathcal{AG}$-groupoid in terms of left ideals are characterised. It is shown that an ordered $\mathcal{AG}$-groupoid $S$ is $0$$(0,2)$-bisimple if and only if $S$ is right $0$-simple. The results of this paper extend the concept of an $\mathcal{AG}$-groupoid without order. Finally, we characterize an intra-regular ordered $\mathcal{AG}$-groupoid in terms of left and right ideals.
Keywords: ordered $\mathcal{AG}$-groupoids, left invertive law, left identity, $(m,n)$-ideals.
@article{PFMT_2015_2_a5,
     author = {Waqar Khan and Faisal Yousafzai and Asad Khan},
     title = {On ordered {Abel--Grassmann{\textquoteright}s} groupoids},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {40--47},
     publisher = {mathdoc},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2015_2_a5/}
}
TY  - JOUR
AU  - Waqar Khan
AU  - Faisal Yousafzai
AU  - Asad Khan
TI  - On ordered Abel--Grassmann’s groupoids
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2015
SP  - 40
EP  - 47
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2015_2_a5/
LA  - en
ID  - PFMT_2015_2_a5
ER  - 
%0 Journal Article
%A Waqar Khan
%A Faisal Yousafzai
%A Asad Khan
%T On ordered Abel--Grassmann’s groupoids
%J Problemy fiziki, matematiki i tehniki
%D 2015
%P 40-47
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2015_2_a5/
%G en
%F PFMT_2015_2_a5
Waqar Khan; Faisal Yousafzai; Asad Khan. On ordered Abel--Grassmann’s groupoids. Problemy fiziki, matematiki i tehniki, no. 2 (2015), pp. 40-47. http://geodesic.mathdoc.fr/item/PFMT_2015_2_a5/

[1] P. Holgate, “Groupoids satisfying a simple invertive law”, Math. Student, 61:1–4 (1992), 101–106 | MR | Zbl

[2] W. Jantanan, T. Changphas, “On $0$-minimal $(0, 2)$-bi-ideals in ordered semigroups”, Quasigroups and related Systems, 21 (2013), 83–90 | MR | Zbl

[3] M. A. Kazim, M. Naseeruddin, “On almost semigroups”, Aligarh Bull. Math., 2 (1972), 1–7 | MR | Zbl

[4] S. Lajos, “Generalized ideals in semigroups”, Acta Sci. Math., 22 (1961), 217–222 | MR | Zbl

[5] Q. Mushtaq, S. M. Yusuf, “On LA-semigroups”, Aligarh Bull. Math., 8 (1978), 65–70 | MR | Zbl

[6] Q. Mushtaq, S. M. Yusuf, “On locally associative LA-semigroups”, J. Nat. Sci. Math., 19 (1979), 57–62 | MR | Zbl

[7] Q. Mushtaq, S. M. Yusuf, “On LA-semigroup defined by a commutative inverse semigroup”, Mat. Vesnik, 40 (1988), 59–62 | MR | Zbl

[8] Q. Mushtaq, M. S. Kamran, “On LA-semigroups with weak associative law”, Scientific Khyber., 1 (1989), 69–71

[9] Q. Mushtaq, M. Khan, “Ideals in left almost semigroups”, Proceedings of 4th International Pure Mathematics Conference (2003), 65–77

[10] P. V. Protić, N. Stevanović, “AG-test and some general properties of Abel–Grassmann's groupoids”, Pure Mathematics and Applications, 6 (1995), 371–383 | MR | Zbl

[11] J. Sanborisoot, T. Changphas, “On Characterizations of $(m, n)$-regular ordered semigroups”, Far East J. Math. Sci., 65 (2012), 75–86 | MR | Zbl

[12] N. Stevanović, P. V. Protić, “Composition of Abel–Grassmann's 3-bands”, Novi Sad. J. Math., 34 (2004), 175–182 | MR

[13] X. Y. Xie, J. Tang, “Fuzzy radicals and prime fuzzy ideals of ordered semigroups”, Inform. Sci., 178 (2008), 4357–4374 | MR | Zbl

[14] F. Yousafzai, N. Yaqoob, A. Ghareeb, “Left regular $\mathcal{AG}$-groupoids in terms of fuzzy interior ideals”, Afrika Mathematika, 24 (2013), 577–587 | MR

[15] F. Yousafzai, A. Khan, B. Davvaz, “On fully regular $\mathcal{AG}$-groupoids”, Afrika Mathematika, 25 (2014), 449–459 | MR

[16] F. Yousafzai, A. Khan, V. Amjad, A. Zeb, “On fuzzy fully regular ordered $\mathcal{AG}$-groupoids”, Journal of Intelligent Fuzzy Systems, 26 (2014), 2973–2982 | MR | Zbl