On reducibility of the weighted composition operators
Problemy fiziki, matematiki i tehniki, no. 2 (2015), pp. 75-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

The question under consideration is reduction of a weighted composition operator to an operator with invariant coefficient by Liapunov transformation. Topological obstruction to be reducible is described in the case of periodic mapping generating operator. Explicit form of the corresponding Liapunov transformation is given.
Keywords: weighted composition operator, reducibility
Mots-clés : Liapunov transformation, Cauchy index, homological equation.
@article{PFMT_2015_2_a12,
     author = {Teube Cyrille Mbainaissem and Serine Alou Lo and Moussa Ould Ahmed Salem},
     title = {On reducibility of the weighted composition operators},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {75--82},
     publisher = {mathdoc},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2015_2_a12/}
}
TY  - JOUR
AU  - Teube Cyrille Mbainaissem
AU  - Serine Alou Lo
AU  - Moussa Ould Ahmed Salem
TI  - On reducibility of the weighted composition operators
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2015
SP  - 75
EP  - 82
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2015_2_a12/
LA  - ru
ID  - PFMT_2015_2_a12
ER  - 
%0 Journal Article
%A Teube Cyrille Mbainaissem
%A Serine Alou Lo
%A Moussa Ould Ahmed Salem
%T On reducibility of the weighted composition operators
%J Problemy fiziki, matematiki i tehniki
%D 2015
%P 75-82
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2015_2_a12/
%G ru
%F PFMT_2015_2_a12
Teube Cyrille Mbainaissem; Serine Alou Lo; Moussa Ould Ahmed Salem. On reducibility of the weighted composition operators. Problemy fiziki, matematiki i tehniki, no. 2 (2015), pp. 75-82. http://geodesic.mathdoc.fr/item/PFMT_2015_2_a12/

[1] A. B. Antonevich, Lineinye funktsionalnye uravneniya. Operatornyi podkhod, Universitetskoe, Minsk, 1988, 230 pp. | MR

[2] A. Katok, B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Cambridge University Press, Cambridge, 1997, 803 pp. | MR | Zbl

[3] N. Karapetiants, S. Samko, Equation with involutive operators, Birkhäusser, Boston, 2001, 427 pp. | MR

[4] V. G. Kravchenko, G. S. Litvinchuk, Introduction to the theory of singular integral operators with shift, Kluwer Acad. Publ., Dordrecht, 1994, 288 pp. | MR | Zbl

[5] N. P. Erugin, “Privodimye sistemy”, Tr. Matem. in-ta AN SSSR, 13, 1946, 3–96 | MR | Zbl

[6] D. V. Anosov, “Additivnoe funktsionalnoe gomologicheskoe uravnenie, svyazannoe s ergodicheskim povorotom okruzhnosti”, Izv. AN SSSR, Ser. mat., 37:6 (1973), 1259–1274 | MR | Zbl

[7] A. Ya. Gordon, “Dostatochnoe uslovie nerazreshimosti additivnogo funktsionalnogo gomologicheskogo uravneniya, svyazannogo s ergodicheskim povorotom okruzhnosti”, Funkts. analiz i pril., 9:6 (1975), 71–72

[8] D. Przeworska-Rolewicz, Equations with transformed argument, Elsevier scientific Publ. Comp., Amsterdam; Polish Scientific Publishers, Warsaw, 1973 | MR | Zbl

[9] A. Bottcher, H. Heidler, “Algebraic compositions operators”, Integral equations and operator theory, 15 (1992), 389–411 | MR | Zbl

[10] Serin Aliu Lo, Mussa O. A. Salem, “Usloviya algebraichnosti operatora vzveshennogo sdviga, porozhdennogo potentsialno periodicheskim otobrazheniem”, Doklady NAN Belarusi, 55:3 (2011), 17–20 | MR | Zbl

[11] G. Belitskii, Y. Lyubich, “On the normal solvability of cohomological equations on topological spaces”, Operator theory: Advances and applications, 103 (1998), 75–87 | MR | Zbl

[12] D. P. Zhelobenko, Vvedenie v teoriyu predstavlenii, Faktorial Press, M., 2001, 136 pp.