Relativistic scattering $s$-states problem for superposition of two potentials «$\delta$-sphere» type
Problemy fiziki, matematiki i tehniki, no. 2 (2015), pp. 7-12.

Voir la notice de l'article provenant de la source Math-Net.Ru

Exact solutions of relativistic two-particle equations for scattering $s$-states are obtained in cases of the $\delta$-function potential and superposition of two $\delta$-function potentials. Scattering amplitudes and phase shifts are calculated on the basis of wave functions found. The analysis of values obtained was carried out. As a result, the unitarity condition and vanishing conditions of scattering amplitudes are proved. It is shown that the non-relativistic limit of relativistic expressions obtained yields results which coincide with corresponding expressions which were found in the process of solving the Schrödinger equation.
Keywords: relativistic two-particle equation, relativistic configurational representation, delta-function potential, scattering amplitude, phase shift, unitarity condition, Ramsauer–Townsend effect.
Mots-clés : $S$-matrix
@article{PFMT_2015_2_a0,
     author = {V. N. Kapshai and Yu. A. Grishechkin},
     title = {Relativistic scattering $s$-states problem for superposition of two potentials {\guillemotleft}$\delta$-sphere{\guillemotright} type},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {7--12},
     publisher = {mathdoc},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2015_2_a0/}
}
TY  - JOUR
AU  - V. N. Kapshai
AU  - Yu. A. Grishechkin
TI  - Relativistic scattering $s$-states problem for superposition of two potentials «$\delta$-sphere» type
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2015
SP  - 7
EP  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2015_2_a0/
LA  - ru
ID  - PFMT_2015_2_a0
ER  - 
%0 Journal Article
%A V. N. Kapshai
%A Yu. A. Grishechkin
%T Relativistic scattering $s$-states problem for superposition of two potentials «$\delta$-sphere» type
%J Problemy fiziki, matematiki i tehniki
%D 2015
%P 7-12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2015_2_a0/
%G ru
%F PFMT_2015_2_a0
V. N. Kapshai; Yu. A. Grishechkin. Relativistic scattering $s$-states problem for superposition of two potentials «$\delta$-sphere» type. Problemy fiziki, matematiki i tehniki, no. 2 (2015), pp. 7-12. http://geodesic.mathdoc.fr/item/PFMT_2015_2_a0/

[1] A. A. Logunov, A. N. Tavkhelidze, “Quasi-optical approach in quantum field theory”, Nuovo Cimento, 29:2 (1963), 380–399 | MR

[2] V. G. Kadyshevsky, “Quasipotential type equation for the relativistic scattering amplitude”, Nucl. Phys., B6:1 (1968), 125–148

[3] V. G. Kadyshevskii, R. M. Mir-Kasimov, N. B. Skachkov, “Trekhmernaya formulirovka relyativistskoi problemy dvukh tel”, EChAYa, 2:3 (1972), 635–690

[4] V. N. Kapshai, T. A. Alferova, “Razlozhenie po matrichnym elementam UNP gruppy Lorentsa i integralnye uravneniya dlya relyativistskikh volnovykh funktsii”, Sb. st., Kovariantnye metody v teoreticheskoi fizike, 4, In-t fiziki NAN Belarusi, Minsk, 1997, 88–95

[5] T. A. Alferova, V. N. Kapshai, “Expansion in terms of matrix elements of the Lorentz group unitary irreducible representations and integral equations for scattering states relativistic wave functions”, Nonlinear phenomena in complex systems, Proced. of the Sixth Annual Seminar NPCS'97, Academy of Sciences of Belarus. Inst. of Phys., Minsk, 1998, 78–85

[6] Yu. N. Demkov, V. N. Ostrovskii, Metod potentsialov nulevogo radiusa v atomnoi fizike, Izdatelstvo Leningradskogo universiteta, L., 1975, 240 pp.

[7] V. N. Kapshai, T. A. Alferova, “Relativistic two-particle one-dimensional scattering problem for superposition of $\delta$-potentials”, J. Phys. A, 32 (1999), 5329–5342 | MR | Zbl

[8] V. N. Kapshai, T. A. Alferova, “One-dimensional relativistic problems on bound states and scattering for a superposition of two $\delta$ potentials”, Russian Physics Journal, 45 (2002), 1–9

[9] Dzh. Teilor, Teoriya rasseyaniya, Mir, M., 1975, 568 pp.