Nonlinear susceptibility of the thin film of dense resonant medium
Problemy fiziki, matematiki i tehniki, no. 1 (2015), pp. 27-31.

Voir la notice de l'article provenant de la source Math-Net.Ru

The computing estimation of a dielectric susceptibility dispersive dependence of a thin layer of the dense resonant medium taking into account absorption saturation is carried out. The possibility of bistability in Lorentz complex function and hysteresis jumps in film resonant reflection are specified.
Keywords: thin optical films, resonant reflection
Mots-clés : dipole-dipolar interaction.
@article{PFMT_2015_1_a4,
     author = {T. V. Timoschenko and Yu. V. Yurevich},
     title = {Nonlinear susceptibility of the thin film of dense resonant medium},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {27--31},
     publisher = {mathdoc},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2015_1_a4/}
}
TY  - JOUR
AU  - T. V. Timoschenko
AU  - Yu. V. Yurevich
TI  - Nonlinear susceptibility of the thin film of dense resonant medium
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2015
SP  - 27
EP  - 31
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2015_1_a4/
LA  - ru
ID  - PFMT_2015_1_a4
ER  - 
%0 Journal Article
%A T. V. Timoschenko
%A Yu. V. Yurevich
%T Nonlinear susceptibility of the thin film of dense resonant medium
%J Problemy fiziki, matematiki i tehniki
%D 2015
%P 27-31
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2015_1_a4/
%G ru
%F PFMT_2015_1_a4
T. V. Timoschenko; Yu. V. Yurevich. Nonlinear susceptibility of the thin film of dense resonant medium. Problemy fiziki, matematiki i tehniki, no. 1 (2015), pp. 27-31. http://geodesic.mathdoc.fr/item/PFMT_2015_1_a4/

[1] G. S. Agarwal, “Microscopic approach to coherent population trapping state and its relaxation in dense medium”, Optics Express, 1:1 (1997), 44–48 | DOI

[2] V. A. Malyshev, H. Glaeske, K.-H. Feller, “Intrinsic optical bistability of an ultrathin film consisting of oriented linear aggregates”, J. Chem. Phys., 113:3 (2000), 1170–1176 | DOI

[3] H. Li, V. A. Sautenkov, Yu. V. Rostovtsev, M. O. Scully, “Excitation dependence of resonance line self-broadening at different atomic densities”, J. Phys. B: Atom. Mol. Opt. Phys., 42 (2009), 065203–065207 | DOI

[4] J. Javanainen, J. Ruostekoski, Yi Li, Sung-Mi Yoo, “Shifts of a resonance line in a dense atomic sample”, Phys. Rev. Lett., 112 (2014), 113603, 5 pp. | DOI

[5] J. J. Maki, M. S. Malcuit, J. E. Sipe, R. W. Boyd, “Linear and Nonlinear Optical Measurements of the Lorentz Local Field”, Phys. Rev. Lett., 67:8 (1991), 972–975 | DOI

[6] A. E. Kaplan, S. N. Volkov, “Nanoscale stratification of local optical lields in low-dimensional atomic lattices”, Phys. Rev. Lett., 101:13 (2008), 133902, 4 pp. | DOI

[7] A. E. Kaplan, S. N. Volkov, “Nanoscale stratification of optical excitation in self-interacting one-dimensional arrays”, Phys. Rev. A, 79 (2009), 1053834, 16 pp. | DOI

[8] C. M. Bowden, G. P. Agrawal, “Gain and reflectivity characteristics of self-oscillations in self-feedback and delayed feedback devices”, Phys. Review, 51:5 (1995), 4132–4139 | DOI

[9] A. A. Afanas'ev et al., “Coherent and incoherent solutions of self-induced transparency in dense resonant media”, J. Opt. Soc. Amer. B, 19:4 (2002), 911–919 | DOI

[10] E. V. Timoschenko, V. A. Yurevich, Yu. V. Yurevich, “Resonance reflection of light by a thin layer of a dense nonlinear medium”, Technical Physics, 58:2 (2013), 251–254 | DOI

[11] D. J. H. Maas et al., “High precision optical characterization of semiconductor saturable absorber mirrors”, Optics Express, 16 (2008), 7571–7575 | DOI