Finite soluble groups with metanilpotent maximal subgroups
Problemy fiziki, matematiki i tehniki, no. 1 (2015), pp. 62-65.

Voir la notice de l'article provenant de la source Math-Net.Ru

The structure of a finite soluble group with two maximal subgroups belonging to the local subformation of the formation of all metanilpotent groups, one of which is selfnormalizable and the other is normalizable is studied.
Keywords: finite group, maximal subgroup, metanilpotent groups
Mots-clés : soluble group, local formation.
@article{PFMT_2015_1_a11,
     author = {A. V. Buzlanov},
     title = {Finite soluble groups with metanilpotent maximal subgroups},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {62--65},
     publisher = {mathdoc},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2015_1_a11/}
}
TY  - JOUR
AU  - A. V. Buzlanov
TI  - Finite soluble groups with metanilpotent maximal subgroups
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2015
SP  - 62
EP  - 65
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2015_1_a11/
LA  - ru
ID  - PFMT_2015_1_a11
ER  - 
%0 Journal Article
%A A. V. Buzlanov
%T Finite soluble groups with metanilpotent maximal subgroups
%J Problemy fiziki, matematiki i tehniki
%D 2015
%P 62-65
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2015_1_a11/
%G ru
%F PFMT_2015_1_a11
A. V. Buzlanov. Finite soluble groups with metanilpotent maximal subgroups. Problemy fiziki, matematiki i tehniki, no. 1 (2015), pp. 62-65. http://geodesic.mathdoc.fr/item/PFMT_2015_1_a11/

[1] A. V. Buzlanov, “Konechnye razreshimye gruppy s normalnoi maksimalnoi metanilpotentnoi podgruppoi”, mezhvedomstv. sb., Voprosy algebry, 8, eds. L. A. Shemetkov i dr., Min-vo obr. Respubliki Belarus, Gomelskii gos. un-t im. F. Skoriny, Gomel, 1995, 22–30

[2] A. V. Buzlanov, “Konechnye razreshimye gruppy s nesopryazhennymi metanilpotentnymi maksimalnymi podgruppami”, Problemy fiziki, matematiki i tekhniki, 2011, no. 2(7), 52–57

[3] L. A. Shemetkov, Formatsii konechnykh grupp, Nauka, M., 1978, 272 pp.

[4] V. S. Monakhov, Vvedenie v teoriyu konechnykh grupp i ikh klassov, uchebnoe posobie, Vysheishaya shkola, Minsk, 2006, 207 pp.