On the intersections of the maximal subgroups of finite groups
Problemy fiziki, matematiki i tehniki, no. 4 (2014), pp. 46-59.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathfrak{F}$ be a nonempty radical formation and let $\pi$ be a set of primes. Conditions under which intersections of the maximal subgroups of a finite group mutually simple with numbers from $\pi$ indexes coincide: $\Phi_{\pi,\overline{G_\mathfrak{F}}}(G)=\Phi_\pi(G)$; $\Delta_{\pi,\overline{G_\mathfrak{F}}}^{\mathfrak{F}}(G)=\Delta_{\pi}^{\mathfrak{F}}(G)$; $\overline{\Delta}_{\pi,\overline{G_\mathfrak{F}}}^{\mathfrak{F}}(G)=\Delta_{\pi}^{\mathfrak{F}}(G)$ are investigated. The results following as consequences were established for not necessarily solvable finite groups $G$ on intersections of the maximal subgroups without restrictions on indexes: $\Phi_{\overline{G_\mathfrak{F}}}(G)=\Phi(G)$; $\Delta_{\overline{G_\mathfrak{F}}}^{\mathfrak{F}}(G)=\Delta^{\mathfrak{F}}(G)$; $\overline{\Delta}_{\overline{G_\mathfrak{F}}}^{\mathfrak{F}}(G)=\Delta^{\mathfrak{F}}(G)$. Analogs of statements on intersections $\Phi_\pi(G)$ and $\Delta_\pi^{\mathfrak{F}}(G)$ for not necessarily radical formations are received.
Mots-clés : radical formations
Keywords: $\mathfrak{F}$-radicals, intersections of maximal subgroups in a finite group.
@article{PFMT_2014_4_a8,
     author = {L. M. Belokon},
     title = {On the intersections of the maximal subgroups of finite groups},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {46--59},
     publisher = {mathdoc},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2014_4_a8/}
}
TY  - JOUR
AU  - L. M. Belokon
TI  - On the intersections of the maximal subgroups of finite groups
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2014
SP  - 46
EP  - 59
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2014_4_a8/
LA  - ru
ID  - PFMT_2014_4_a8
ER  - 
%0 Journal Article
%A L. M. Belokon
%T On the intersections of the maximal subgroups of finite groups
%J Problemy fiziki, matematiki i tehniki
%D 2014
%P 46-59
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2014_4_a8/
%G ru
%F PFMT_2014_4_a8
L. M. Belokon. On the intersections of the maximal subgroups of finite groups. Problemy fiziki, matematiki i tehniki, no. 4 (2014), pp. 46-59. http://geodesic.mathdoc.fr/item/PFMT_2014_4_a8/

[1] L. A. Shemetkov, Formatsii konechnykh grupp, Nauka, M., 1978, 272 pp. | MR | Zbl

[2] V. S. Monakhov, “Zamechaniya o maksimalnykh podgruppakh konechnykh grupp”, Doklady NAN Belarusi, 2003, no. 4(47), 31–33 | MR

[3] M. V. Selkin, V. N. Semenchuk, “Peresechenie maksimalnykh podgrupp v konechnykh gruppakh”, Voprosy algebry, 1985, no. 1, 67–72

[4] L. M. Belokon, “Peresecheniya maksimalnykh podgrupp konechnykh grupp i radikalnye formatsii”, Izvestiya Gomelskogo gosudarstvennogo universiteta im. F. Skoriny, 2013, no. 6(81), 3–10

[5] Huppert B., Blackburn N., Finite Groups, v. III, Springer, Berlin–Heidelberg–New York, 1982, 454 pp. | MR

[6] K. Doerk, T. Hawkes, Finite soluble groups, Walter de Gruyter, Berlin–New York, 1992, 891 pp. | MR

[7] L. A. Shemetkov, A. N. Skiba, Formatsii algebraicheskikh sistem, Nauka, M., 1989, 256 pp. | MR

[8] A. F. Vasilev, T. I. Vasileva, A. V. Syrokvashin, “Zametka o peresecheniyakh nekotorykh maksimalnykh podgrupp konechnykh grupp”, Problemy fiziki, matematiki i tekhniki, 2012, no. 2(11), 62–64

[9] V. S. Monakhov, “Zamechanie o peresechenii nenormalnykh maksimalnykh podgrupp konechnykh grupp”, Izvestiya Gomelskogo gosudarstvennogo universiteta im. F. Skoriny, 2004, no. 6(27), 81

[10] L. M. Belokon, “O peresecheniyakh maksimalnykh podgrupp v konechnykh razreshimykh gruppakh”, Izvestiya Gomelskogo gosudarstvennogo universiteta im. F. Skoriny, 2010, no. 5(62), 119–120