On $\sigma$-properties of finite groups~I
Problemy fiziki, matematiki i tehniki, no. 4 (2014), pp. 89-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\sigma=\{\sigma_i|i \in I\}$ be some partition of the set $\mathbb{P}$ of all primes, that is, $\mathbb{P}=\bigcup_{i\in I}\sigma_i$ and $\sigma_i\cap\sigma_j=\varnothing$ for all $i\ne j$. We say that a finite group $G$ is: $\sigma$-primary if $G$ is a $\sigma_i$-group for some $\sigma_i\in\sigma$; a $\sigma$-group if $G$ has a set $\mathcal{H}=\{H_1, \dots, H_t\}$ of Hall subgroups such that $H_i$ is $\sigma$-primary, $(|H_i|, |H_j|)=1$ for all $i\ne j$ and $\pi(G)=\pi(H_1)\cup\dots\cup\pi(H_t)$. We analyze some properties of finite $\sigma$-groups.
Keywords: finite group, Hall subgroup, $\pi$-separable group.
Mots-clés : $\sigma$-group, $\sigma$-soluble group
@article{PFMT_2014_4_a12,
     author = {A. N. Skiba},
     title = {On $\sigma$-properties of finite {groups~I}},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {89--96},
     publisher = {mathdoc},
     number = {4},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2014_4_a12/}
}
TY  - JOUR
AU  - A. N. Skiba
TI  - On $\sigma$-properties of finite groups~I
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2014
SP  - 89
EP  - 96
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2014_4_a12/
LA  - en
ID  - PFMT_2014_4_a12
ER  - 
%0 Journal Article
%A A. N. Skiba
%T On $\sigma$-properties of finite groups~I
%J Problemy fiziki, matematiki i tehniki
%D 2014
%P 89-96
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2014_4_a12/
%G en
%F PFMT_2014_4_a12
A. N. Skiba. On $\sigma$-properties of finite groups~I. Problemy fiziki, matematiki i tehniki, no. 4 (2014), pp. 89-96. http://geodesic.mathdoc.fr/item/PFMT_2014_4_a12/

[1] A. Ballester-Bolinches, R. Esteban-Romero, M. Asaad, Products of finite groups, Walter de Gruyter, Berlin–New York, 2010 | MR | Zbl

[2] L. A. Shemetkov, Formations of finite groups, Nauka, Main Editorial Board for Physical and Mathematical Literature, M., 1978 | MR | Zbl

[3] N. T. Vorob'ev, V. N. Zagurski, “Fitting classes with the given properties of Hall subgroups”, Math. Zametki, 2005, no. 2, 234–240 | MR | Zbl

[4] L. A. Shemetkov, A. N. Skiba, “Multiply $\omega$-local formations and Fitting classes of finite groups”, Siberian Advances in Mathematics, 2000, no. 2, 114–147 | MR

[5] A. N. Skiba, Algebra of formations, Belaruskaja Navuka, Minsk, 1997 | MR | Zbl

[6] A. N. Skiba, N. N. Vorobyev, “On Boolean lattices of $n$-multiply local Fitting classes”, Siberian Math. Zh., 1999, no. 3, 523–530 | MR

[7] A. Ballester-Bolinches, L. M. Ezquerro, Classes of Finite Groups, Springer-Verlag, Dordrecht, 2006 | MR | Zbl

[8] A. N. Skiba, On $\sigma$-properties of finite groups, Preprint, 2013

[9] K. Doerk, T. Hawkes, Finite Soluble Groups, Walter de Gruyter, Berlin–New York, 1992 | MR

[10] O. H. Kegel, “Untergruppen verbande endlicher Gruppen, die den subnormalteilerverband each enthalten”, Arch. Math. (Basel), 1978, no. 3, 225–228 | DOI | MR | Zbl

[11] A. F. Vasilyev, S. F. Kamornikov, V. N. Semenchuk, “On lattices of subgroups of finite groups”, Infinite groups and related algebraiac structures, ed. S. N. Chernukov, Institut Matematiki AN Ukraini, Kiev, 1993, 27–54 | MR

[12] D. Gorenstein, Finite Groups, Harper Row Publishers, New York–Evanston–London, 1968 | MR | Zbl

[13] O. H. Kegel, “Sylow-Gruppen and Subnormalteilerendlicher Gruppen”, Math. Z., 1962, 205–221 | DOI | MR | Zbl

[14] W. Deskins, “On quasinormal subgroups of finite groups”, Math. Z., 1963, 125–132 | DOI | MR | Zbl

[15] V. N. Semenchuk, “Finite groups with a system of minimal non-$\mathfrak{F}$-groups”, Subgroup structure of finite groups, Nauka i tehnika, Minsk, 1981, 138–139 | MR

[16] V. S. Monakhov, V. N. Knyagina, “On finite groups with some subnormal Schmidt subgroups”, Siberian Math. Zh., 2004, no. 6, 1316–1322 | MR | Zbl

[17] A. Mann, “Fnite groups whose $n$-maximal subgroups are subnormal”, Trans. Amer. Math. Soc., 1968, 395–409 | MR | Zbl

[18] B. Huppert, N. Blackburn, Finite groups, v. III, Springer-Verlag, Berlin–New-York, 1982

[19] L. A. Shemetkov, A. N. Skiba, Formations of Algebraic Systems, Nauka, Main Editorial Board for Physical and Mathematical Literature, M., 1989 | MR

[20] V. I. Murashko, “On one generalization of Baer's theorems about hypercenter and nilpotent residual”, Problems of Physics, Mathematics and Technics, 2013, no. 16, 4–88

[21] V. A. Vedernikov, “On $\pi$-properties of finite groups”, Arithmetic and Subgroup Structure of Finite Groups, Nauka i Tehnika, Mn., 1986, 13–19 | MR

[22] D. V. Gritsuk, V. S. Monakhov, “About maximal subgroups of a finite solvable group”, Eurasian Math. J., 2012, no. 2, 129-134 | MR | Zbl

[23] R. K. Agrawal, “Finite groups whose subnormal subgroups permute with all Sylow subgroups”, Proc. Amer. Math. Soc., 1975, 77–83 | DOI | MR | Zbl

[24] B. Huppert, Endliche Gruppen, v. I, Springer-Verlag, Berlin–Heidelberg–New York, 1967 | MR | Zbl

[25] R. Schmidt, Subgroup lattices of groups, Walter de Gruyter, Berlin–New York, 1994 | MR | Zbl

[26] Between Nilpotent and Solvable, eds. M. Weinstein et al., Polugonal Publishing House, Passaic N. J., 1982 | MR

[27] W. Guo, A. N. Skiba, “Finite groups with permutable complete Wielandt sets of subgroups”, J. Group Theory | DOI

[28] W. Guo, A. N. Skiba, Finite groups with $\mathcal{H}$-permutable subgroups, Preprint, 2014

[29] B. Huppert, “Zur Sylow struktur Auflösbarer Gruppen”, Arch. Math., 1961, 161–169 | DOI | MR | Zbl

[30] M. Asaad, A. A. Heliel, “On permutable subgroups of finite groups”, Arch. Math., 2003, 113–118 | DOI | MR | Zbl

[31] R. K. Agrawal, “Generalized center and hypercenter of a finite group”, Proc. Amer. Math. Soc., 1976, 13–21 | DOI | MR | Zbl

[32] B. Huppert, “Zur Sylow struktur Auflösbarer Gruppen, II”, Arch. Math., 1964, 251–257 | DOI | MR | Zbl

[33] V. A. Vedernikov, “Finite groups with subnormal Schmidt subgroups”, Algebra and Logica, 2007, no. 6, 669–687 | MR | Zbl

[34] D. P. Andreeva, W. Guo, A. N. Skiba, “Finite groups of Spencer hight $\leqslant3$”, Algebra Colloquium, 2014

[35] V. A. Kovaleva, A. N. Skiba, “Finite soluble groups with all $n$-maximal subgroups $\mathfrak{F}$-subnormal”, J. Group Theory, 17 (2014), 273–290 | DOI | MR | Zbl