Formula of an injector of a finite $\pi$-soluble group
Problemy fiziki, matematiki i tehniki, no. 4 (2014), pp. 77-88.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a finite $\pi$-soluble group. We say that a Fitting set $\mathcal{F}$ of $G$ is $\pi$-saturated if it verifies $H\in\mathcal{F}$ whenever $O^{\pi'}(H)\in\mathcal{F}$. It is proved that $\mathcal{F}$-injector of $G$ is a subgroup of the form $W\cdot C_{D_p}(W/W_{F(p)})$, where $\mathcal{F}$ is a $\pi$-saturated Fitting set, which is defined with full integrated $H$-function $F$ of $G$$\Sigma$ — Hall system of $G$, $D=N_G(\Sigma)$, $p\in\pi(G)\cap\pi\ne\varnothing$, $D_p\in\Sigma\cap D$, $W$ is an $\mathcal{F}$-injector of $O^p(G)$ and $\Sigma\searrow W$.
Keywords: finite $\pi$-soluble group, $\pi$-saturated Fitting set, $\mathcal{F}$-injector.
@article{PFMT_2014_4_a11,
     author = {M. G. Semenov},
     title = {Formula of an injector of a finite $\pi$-soluble group},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {77--88},
     publisher = {mathdoc},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2014_4_a11/}
}
TY  - JOUR
AU  - M. G. Semenov
TI  - Formula of an injector of a finite $\pi$-soluble group
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2014
SP  - 77
EP  - 88
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2014_4_a11/
LA  - ru
ID  - PFMT_2014_4_a11
ER  - 
%0 Journal Article
%A M. G. Semenov
%T Formula of an injector of a finite $\pi$-soluble group
%J Problemy fiziki, matematiki i tehniki
%D 2014
%P 77-88
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2014_4_a11/
%G ru
%F PFMT_2014_4_a11
M. G. Semenov. Formula of an injector of a finite $\pi$-soluble group. Problemy fiziki, matematiki i tehniki, no. 4 (2014), pp. 77-88. http://geodesic.mathdoc.fr/item/PFMT_2014_4_a11/

[1] B. Brewster, “$\mathfrak{F}$-projectors in finite $\pi$-solvable groups”, Arch. Math., 23:1 (1972), 133–138 | DOI | MR | Zbl

[2] J. R. Martinez Verduchi, “On the theory of Fitting classes of finite $\pi$-solvable groups”, Rev. Acad. Cienc. Zaragoza, 29:3–4 (1974), 287–292 | MR | Zbl

[3] B. Hartley, “On Fischer's dualization of formation theory”, Proc. London Math. Soc., 3:2 (1969), 193–207 | DOI | MR | Zbl

[4] P. D'arcy, “Locally defined fitting classes”, J. Austral. Math. Soc. Series A, 20 (1975), 25–32 | DOI | MR | Zbl

[5] W. Guo, N. T. Vorob'ev, “On injectors of finite soluble groups”, Comm. Algebra, 36 (2008), 3200–3208 | DOI | MR | Zbl

[6] V. N. Zagurskii, N. T. Vorobev, “In'ektory lokalnykh klassov Fittinga”, Vesnik VDU, 2010, no. 4(58), 17–20

[7] K. Doerk, T. Hawkes, Finite soluble groups, Walter de Gruyter, Berlin–New York, 1992, 891 pp. | MR

[8] P. A. Golberg, “Khollovskie $\theta$-bazy konechnykh grupp”, Izvestiya vysshikh uchebnykh zavedenii, 1961, no. 1(20), 36–43 | MR

[9] V. G. Sementovskii, “O pronormalnykh podgruppakh konechnykh $\pi$-razreshimykh grupp”, Vesn. Vitsebs. dzyarzh. un-ta, 2002, no. 1, 79–84 | MR

[10] L. Ya. Polyakov, V. G. Sementovskii, “Normalno pogruzhennye podgruppy konechnykh grupp”, Konechnye gruppy, Nauka i tekhnika, Minsk, 1975, 121–128

[11] N. T. Vorobev, “O predpolozhenii Khouksa dlya radikalnykh klassov”, Sib. matem. zhurn., 37:6 (1996), 1296–1302 | MR | Zbl

[12] N. T. Vorobev, “O radikalnykh klassakh konechnykh grupp s usloviem Loketta”, Matematicheskie zametki, 43:2 (1988), 161–168 | MR | Zbl

[13] F. P. Lockett, “On the Theory of Fitting Classes of finite and soluble groups”, Math. Z., 131 (1973), 103–115 | DOI | MR | Zbl

[14] S. A. Chunikhin, Podgruppy konechnykh grupp, Nauka i tekhnika, Minsk, 1964 | MR | Zbl

[15] L. A. Shemetkov, Formatsii konechnykh grupp, Nauka, M., 1978, 278 pp. | MR | Zbl