On the solutions of the simplified system of nonlinear differential equations in the motion of four particles in a plane
Problemy fiziki, matematiki i tehniki, no. 3 (2014), pp. 80-84.

Voir la notice de l'article provenant de la source Math-Net.Ru

A system describing the motion of four bodies under the action of gravity is considered. By elementary algebraic manipulations a simple system consisting of non-linear differential equations, each of which has a second order is selected. For each simplified system there are sets of constants of interparticle interaction, in which the general solution is meromorphic.
Keywords: movement of four bodies, Painlevé property, meromorphic function.
Mots-clés : constant interaction
@article{PFMT_2014_3_a14,
     author = {A. T. Sazonova},
     title = {On the solutions of the simplified system of nonlinear differential equations in the motion of four particles in a plane},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {80--84},
     publisher = {mathdoc},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2014_3_a14/}
}
TY  - JOUR
AU  - A. T. Sazonova
TI  - On the solutions of the simplified system of nonlinear differential equations in the motion of four particles in a plane
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2014
SP  - 80
EP  - 84
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2014_3_a14/
LA  - ru
ID  - PFMT_2014_3_a14
ER  - 
%0 Journal Article
%A A. T. Sazonova
%T On the solutions of the simplified system of nonlinear differential equations in the motion of four particles in a plane
%J Problemy fiziki, matematiki i tehniki
%D 2014
%P 80-84
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2014_3_a14/
%G ru
%F PFMT_2014_3_a14
A. T. Sazonova. On the solutions of the simplified system of nonlinear differential equations in the motion of four particles in a plane. Problemy fiziki, matematiki i tehniki, no. 3 (2014), pp. 80-84. http://geodesic.mathdoc.fr/item/PFMT_2014_3_a14/

[1] F. Kalodzhero, Teoreticheskaya i matematicheskaya fizika, v. 133, Razreshimaya zadacha trekh tel i gipotezy Penleve, 2-e izd., Nauka, M., 2002, 149 pp.

[2] A. T. Lozovskaya, “Test Penleve dlya nekotorykh sistem differentsialnykh uravnenii, svyazannykh s zadachei trekh tel”, Nauka-2009, Sb. st. aspirantov i magistrantov GrGU/GrGU im. Ya. Kupaly, ed. A. F. Pronevich, GrGU, Grodno, 2009, 48–52