On the solutions of the simplified system of nonlinear differential equations in the motion of four particles in a plane
Problemy fiziki, matematiki i tehniki, no. 3 (2014), pp. 80-84
Cet article a éte moissonné depuis la source Math-Net.Ru
A system describing the motion of four bodies under the action of gravity is considered. By elementary algebraic manipulations a simple system consisting of non-linear differential equations, each of which has a second order is selected. For each simplified system there are sets of constants of interparticle interaction, in which the general solution is meromorphic.
Keywords:
movement of four bodies, meromorphic function.
Mots-clés : constant interaction, Painlevé property
Mots-clés : constant interaction, Painlevé property
@article{PFMT_2014_3_a14,
author = {A. T. Sazonova},
title = {On the solutions of the simplified system of nonlinear differential equations in the motion of four particles in a plane},
journal = {Problemy fiziki, matematiki i tehniki},
pages = {80--84},
year = {2014},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PFMT_2014_3_a14/}
}
TY - JOUR AU - A. T. Sazonova TI - On the solutions of the simplified system of nonlinear differential equations in the motion of four particles in a plane JO - Problemy fiziki, matematiki i tehniki PY - 2014 SP - 80 EP - 84 IS - 3 UR - http://geodesic.mathdoc.fr/item/PFMT_2014_3_a14/ LA - ru ID - PFMT_2014_3_a14 ER -
%0 Journal Article %A A. T. Sazonova %T On the solutions of the simplified system of nonlinear differential equations in the motion of four particles in a plane %J Problemy fiziki, matematiki i tehniki %D 2014 %P 80-84 %N 3 %U http://geodesic.mathdoc.fr/item/PFMT_2014_3_a14/ %G ru %F PFMT_2014_3_a14
A. T. Sazonova. On the solutions of the simplified system of nonlinear differential equations in the motion of four particles in a plane. Problemy fiziki, matematiki i tehniki, no. 3 (2014), pp. 80-84. http://geodesic.mathdoc.fr/item/PFMT_2014_3_a14/
[1] F. Kalodzhero, Teoreticheskaya i matematicheskaya fizika, v. 133, Razreshimaya zadacha trekh tel i gipotezy Penleve, 2-e izd., Nauka, M., 2002, 149 pp.
[2] A. T. Lozovskaya, “Test Penleve dlya nekotorykh sistem differentsialnykh uravnenii, svyazannykh s zadachei trekh tel”, Nauka-2009, Sb. st. aspirantov i magistrantov GrGU/GrGU im. Ya. Kupaly, ed. A. F. Pronevich, GrGU, Grodno, 2009, 48–52