Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2014_3_a13, author = {A. R. Mirotin and A. A. Atvinovskii}, title = {Inversion of a linear combination of values of the resolvent of a closed operator}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {77--79}, publisher = {mathdoc}, number = {3}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PFMT_2014_3_a13/} }
TY - JOUR AU - A. R. Mirotin AU - A. A. Atvinovskii TI - Inversion of a linear combination of values of the resolvent of a closed operator JO - Problemy fiziki, matematiki i tehniki PY - 2014 SP - 77 EP - 79 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PFMT_2014_3_a13/ LA - ru ID - PFMT_2014_3_a13 ER -
A. R. Mirotin; A. A. Atvinovskii. Inversion of a linear combination of values of the resolvent of a closed operator. Problemy fiziki, matematiki i tehniki, no. 3 (2014), pp. 77-79. http://geodesic.mathdoc.fr/item/PFMT_2014_3_a13/
[1] N. Danford, Dzh. T. Shvarts, Lineinye operatory, v. 1, Obschaya teoriya, IL, M., 1962, 895 pp.
[2] A. A. Atvinovskii, A. R. Mirotin, “Ob odnom funktsionalnom ischislenii zamknutykh operatorov v banakhovom prostranstve”, Izvestiya vuzov. Matematika, 2013, no. 10, 3–15
[3] M. G. Krein, A. A. Nudelman, Problema momentov Markova i ekstremalnye zadachi, Nauka, M., 1973, 552 pp. | MR
[4] A. R. Mirotin, “Obraschenie operatorno monotonnykh funktsii negativnykh operatorov v banakhovom prostranstve”, Trudy Instituta matematiki. Minsk, 12:1 (2004), 104–108
[5] A. A. Atvinovskii, A. R. Mirotin, “Obraschenie odnogo klassa operatorov v banakhovom prostranstve i nekotorye ego primeneniya”, Problemy fiziki, matematiki i tekhniki, 2013, no. 3(16), 55–60
[6] Yu. A. Brychkov, A. P. Prudnikov, Integralnye preobrazovaniya obobschennykh funktsii, Nauka, M., 1977, 286 pp. | MR | Zbl
[7] V. S. Vladimirov, Obobschennye funktsii v matematicheskoi fizike, Nauka, M., 1979, 280 pp. | MR
[8] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972, 740 pp. | MR | Zbl