Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2014_2_a7, author = {A. M. Gal'mak and N. A. Shchuchkin}, title = {Cyclic $n$-ary groups and their generalizations}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {46--53}, publisher = {mathdoc}, number = {2}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PFMT_2014_2_a7/} }
A. M. Gal'mak; N. A. Shchuchkin. Cyclic $n$-ary groups and their generalizations. Problemy fiziki, matematiki i tehniki, no. 2 (2014), pp. 46-53. http://geodesic.mathdoc.fr/item/PFMT_2014_2_a7/
[1] E. L. Post, “Polyadic groups”, Trans. Amer. Math. Soc., 48:2 (1940), 208–350 | DOI | MR
[2] A. M. Galmak, $n$-Arnye gruppy, v. 1, GGU im. F. Skoriny, Gomel, 2003, 202 pp.
[3] A. M. Galmak, N. A. Schuchkin, “K teoreme Posta o smezhnykh klassakh”, XI Mezhdunar konf. «Algebra i teoriya chisel: sovremennye problemy i prilozheniya», tez. dokl. (Saratov, 10–16 sent. 2012), 39–40 | MR
[4] V. A. Artamonov, “Svobodnye $n$-gruppy”, Mat. zametki, 8:4 (1970), 499–507 | MR
[5] V. A. Artamonov, “O shraierovykh mnogoobraziyakh $n$-grupp i $n$-polugrupp”, Trudy seminara im. I. G. Petrovskogo, 5, 1979, 193–202 | MR
[6] S. A. Rusakov, Algebraicheskie $n$-arnye sistemy, Navuka i tekhnika, Mn., 1992, 245 pp.
[7] W. Dörnte, “Untersuchungen über einen verallgemeinerten Gruppenbegrieff”, Math. Z., 29 (1928), 1–19 | DOI | MR | Zbl
[8] N. A. Schuchkin, “Polutsiklicheskie $n$-arnye gruppy”, Izvestiya GGU im. F. Skoriny, 2009, no. 3 (54), 186–194
[9] A. M. Galmak, G. N. Vorobev, “O teoreme Posta–Gluskina–Khossu”, Problemy fiziki, matematiki i tekhniki, 2013, no. 1 (14), 55–60